These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 21052279)

  • 41. Estimation of point-spread functions and modulation-transfer functions of optical devices by statistical properties of randomly distributed surfaces.
    Pieralli C
    Appl Opt; 1994 Dec; 33(35):8186-93. PubMed ID: 20963051
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spectral super-resolution reflectance retrieval from remotely sensed imaging spectrometer data.
    Jia G; Hueni A; Tao D; Geng R; Schaepman ME; Zhao H
    Opt Express; 2016 Aug; 24(17):19905-19. PubMed ID: 27557266
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modeling technique for the Hubble Space Telescope wave-front deformation.
    Sasïse M; Rousselet K; Lazarides E
    Appl Opt; 1995 May; 34(13):2278-83. PubMed ID: 21037778
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Accurate Monte Carlo modelling of the back compartments of SPECT cameras.
    Rault E; Staelens S; Van Holen R; De Beenhouwer J; Vandenberghe S
    Phys Med Biol; 2011 Jan; 56(1):87-104. PubMed ID: 21119230
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optimization of the Monte Carlo code for modeling of photon migration in tissue.
    Zołek NS; Liebert A; Maniewski R
    Comput Methods Programs Biomed; 2006 Oct; 84(1):50-7. PubMed ID: 16962201
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Estimation of aerosol columnar size distribution and optical thickness from the angular distribution of radiance exiting the atmosphere: simulations.
    Wang M; Gordon HR
    Appl Opt; 1995 Oct; 34(30):6989-7001. PubMed ID: 21060560
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development and validation of a Monte Carlo simulation of photon transport in an Anger camera.
    De Vries DJ; Moore SC; Zimmerman RE; Mueller SP; Friedland B; Lanza RC
    IEEE Trans Med Imaging; 1990; 9(4):430-8. PubMed ID: 18222790
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Analytical derivation of the point spread function for pinhole collimators.
    Bal G; Acton PD
    Phys Med Biol; 2006 Oct; 51(19):4923-50. PubMed ID: 16985279
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of polarimetric satellite data measured in the visible region on aerosol detection and on the performance of atmospheric correction procedure over open ocean waters.
    Harmel T; Chami M
    Opt Express; 2011 Oct; 19(21):20960-83. PubMed ID: 21997105
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region.
    Wang M; Shi W; Jiang L
    Opt Express; 2012 Jan; 20(2):741-53. PubMed ID: 22274419
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Estimation of chlorophyll-a concentration in turbid productive waters using airborne hyperspectral data.
    Moses WJ; Gitelson AA; Perk RL; Gurlin D; Rundquist DC; Leavitt BC; Barrow TM; Brakhage P
    Water Res; 2012 Mar; 46(4):993-1004. PubMed ID: 22209281
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Scattered and reflected light intensities above the atmosphere.
    Thompson BC; Wells MB
    Appl Opt; 1971 Jul; 10(7):1539-49. PubMed ID: 20111159
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces.
    Kotchenova SY; Vermote EF
    Appl Opt; 2007 Jul; 46(20):4455-64. PubMed ID: 17579701
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Relative importance of multiple scattering by air molecules and aerosols in forming the atmospheric path radiance in the visible and near-infrared parts of the spectrum.
    Antoine D; Morel A
    Appl Opt; 1998 Apr; 37(12):2245-59. PubMed ID: 18273149
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of detector weighting functions on the point spread function of high-resolution PET tomographs: a simulation study.
    Karuta B; Lecomte R
    IEEE Trans Med Imaging; 1992; 11(3):379-85. PubMed ID: 18222880
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Error bounds of a fast atmospheric correction algorithm for the Landsat thematic mapper and multispectral scanner bands.
    Richter R
    Appl Opt; 1991 Oct; 30(30):4412-7. PubMed ID: 20717219
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Adjacency effects in satellite radiometric products from coastal waters: a theoretical analysis for the northern Adriatic Sea.
    Bulgarelli B; Kiselev V; Zibordi G
    Appl Opt; 2017 Feb; 56(4):854-869. PubMed ID: 28158086
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Research on the atmospheric correction for ZY-3 MUX image].
    Yang L; Pan ZQ; Fu QY; Han QJ; Sun K; Zhang XW; Wang AC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Jul; 33(7):1903-7. PubMed ID: 24059198
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: path radiance.
    Kotchenova SY; Vermote EF; Matarrese R; Klemm FJ
    Appl Opt; 2006 Sep; 45(26):6762-74. PubMed ID: 16926910
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Restoration of differently blurred versions of an image with measurement errors in the PSF's.
    Ward RK
    IEEE Trans Image Process; 1993; 2(3):369-81. PubMed ID: 18296224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.