These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 21052385)

  • 1. Investigation of computer-generated diffractive beam shapers for flattening of single-modal CO(2) laser beams.
    Duparré M; Golub MA; Lüdge B; Pavelyev VS; Soifer VA; Uspleniev GV; Volotovskii SG
    Appl Opt; 1995 May; 34(14):2489-97. PubMed ID: 21052385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polarization converter for higher-order laser beams using a single binary diffractive optical element as beam splitter.
    Khonina SN; Karpeev SV; Alferov SV
    Opt Lett; 2012 Jun; 37(12):2385-7. PubMed ID: 22739916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of the spatial frequency composition of the target pattern and the number of quantization levels in diffractive beam shaper design.
    Hsu KH; Lin HY
    Appl Opt; 2012 Jun; 51(16):3313-22. PubMed ID: 22695565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffractive Beam Shaper for Multiwavelength Lasers for Flow Cytometry.
    Han Y; Zhao J; Jiao Z; Chao Z; Tárnok A; You Z
    Cytometry A; 2021 Feb; 99(2):194-204. PubMed ID: 33078537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffractive properties of obstructed vector Laguerre-Gaussian beam under tight focusing condition.
    Vyas S; Niwa M; Kozawa Y; Sato S
    J Opt Soc Am A Opt Image Sci Vis; 2011 Jul; 28(7):1387-94. PubMed ID: 21734737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extended focus depth for Gaussian beam using binary phase diffractive optical elements.
    Abdelhalim B; Fromager M; Aït-Ameur K
    Appl Opt; 2018 Mar; 57(8):1899-1903. PubMed ID: 29521972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photolithographic fabrication method of computer-generated holographic interferograms.
    Kajanto M; Byckling E; Fagerholm J; Heikonen J; Turunen J; Vasara A; Salin A
    Appl Opt; 1989 Feb; 28(4):778-84. PubMed ID: 20548559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compact flattop laser beam shaper using vectorial vortex.
    Cheng W; Han W; Zhan Q
    Appl Opt; 2013 Jul; 52(19):4608-12. PubMed ID: 23842258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical metasurfaces for polarization-controlled beam shaping.
    Avayu O; Eisenbach O; Ditcovski R; Ellenbogen T
    Opt Lett; 2014 Jul; 39(13):3892-5. PubMed ID: 24978764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extended focus diffractive optical element for Gaussian laser beams.
    Golub MA; Shurman V; Grossinger I
    Appl Opt; 2006 Jan; 45(1):144-50. PubMed ID: 16422333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of methods for beam angle optimization for IMRT using an accelerated exhaustive search strategy.
    Wang X; Zhang X; Dong L; Liu H; Wu Q; Mohan R
    Int J Radiat Oncol Biol Phys; 2004 Nov; 60(4):1325-37. PubMed ID: 15519806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of Galilean refractive beam shaping system for accurately generating near-diffraction-limited flattop beam with arbitrary beam size.
    Ma H; Liu Z; Jiang P; Xu X; Du S
    Opt Express; 2011 Jul; 19(14):13105-17. PubMed ID: 21747463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Five beam holographic lithography for simultaneous fabrication of three dimensional photonic crystal templates and line defects using phase tunable diffractive optical element.
    Lin Y; Harb A; Lozano K; Xu D; Chen KP
    Opt Express; 2009 Sep; 17(19):16625-31. PubMed ID: 19770878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinoform-only Gaussian-to-rectangle beam shaper for a semiconductor laser.
    Bengtsson J
    Appl Opt; 1996 Jul; 35(20):3807-14. PubMed ID: 21102778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffractive phase elements for beam shaping: a new design method.
    Tan X; Gu BY; Yang GZ; Dong BZ
    Appl Opt; 1995 Mar; 34(8):1314-20. PubMed ID: 21037662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining and collimation of RGB laser beams with transmissive resonance domain diffractive optics.
    Barlev O; Golub MA
    Appl Opt; 2018 Aug; 57(23):6742-6749. PubMed ID: 30129620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Holographic diffractive collimators based on recording with homocentric diverging beams for diode lasers.
    Miler M; Koudela I; Aubrecht I
    Appl Opt; 1999 May; 38(14):3019-24. PubMed ID: 18319886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous-relief diffractive optical elements for two-dimensional array generation.
    Gale MT; Rossi M; Schütz H; Ehbets P; Herzig HP; Prongué D
    Appl Opt; 1993 May; 32(14):2526-33. PubMed ID: 20820413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beam shaping diffractive wave plates [Invited].
    De Sio L; Roberts DE; Liao Z; Hwang J; Tabiryan N; Steeves DM; Kimball BR
    Appl Opt; 2018 Jan; 57(1):A118-A121. PubMed ID: 29328136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffractive optical elements for the formation of "light bottle" intensity distributions.
    Pavelyev V; Osipov V; Kachalov D; Khonina S; Cheng W; Gaidukeviciute A; Chichkov B
    Appl Opt; 2012 Jun; 51(18):4215-8. PubMed ID: 22722300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.