These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 21052425)

  • 21. Quantitative one-dimensional imaging using picosecond dual-broadband pure-rotational coherent anti-Stokes Raman spectroscopy.
    Kliewer CJ; Gao Y; Seeger T; Patterson BD; Farrow RL; Settersten TB
    Appl Opt; 2011 Apr; 50(12):1770-8. PubMed ID: 21509070
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Measurements of OH mole fraction and temperature up to 20 kHz by using a diode-laser-based UV absorption sensor.
    Meyer TR; Roy S; Anderson TN; Miller JD; Katta VR; Lucht RP; Gord JR
    Appl Opt; 2005 Nov; 44(31):6729-40. PubMed ID: 16270562
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiplex CARS for simultaneous measurement of temperature and CO(2) and H(2) concentrations in a combustion environment.
    Singh JP; Yueh FY
    Appl Opt; 1991 May; 30(15):1967-75. PubMed ID: 20700165
    [TBL] [Abstract][Full Text] [Related]  

  • 24. One-dimensional vibrational coherent anti-Stokes Raman-scattering thermometry.
    Jonuscheit J; Thumann A; Schenk M; Seeger T; Leipertz A
    Opt Lett; 1996 Oct; 21(19):1532-4. PubMed ID: 19881715
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct Coherent Raman Temperature Imaging and Wideband Chemical Detection in a Hydrocarbon Flat Flame.
    Bohlin A; Kliewer CJ
    J Phys Chem Lett; 2015 Feb; 6(4):643-9. PubMed ID: 26262480
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phase-locked two-line OH planar laser-induced fluorescence thermometry in a pulsating gas turbine model combustor at atmospheric pressure.
    Giezendanner-Thoben R; Meier U; Meier W; Heinze J; Aigner M
    Appl Opt; 2005 Nov; 44(31):6565-77. PubMed ID: 16270545
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative Rayleigh thermometry for high background scattering applications with structured laser illumination planar imaging.
    Kempema NJ; Long MB
    Appl Opt; 2014 Oct; 53(29):6688-97. PubMed ID: 25322370
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diagnostic Imaging in Flames with Instantaneous Planar Coherent Raman Spectroscopy.
    Bohlin A; Kliewer CJ
    J Phys Chem Lett; 2014 Apr; 5(7):1243-8. PubMed ID: 26274479
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probe-pulse optimization for nonresonant suppression in hybrid fs/ps coherent anti-Stokes Raman scattering at high temperature.
    Miller JD; Slipchenko MN; Meyer TR
    Opt Express; 2011 Jul; 19(14):13326-33. PubMed ID: 21747487
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N(2) thermometry.
    Seeger T; Kiefer J; Leipertz A; Patterson BD; Kliewer CJ; Settersten TB
    Opt Lett; 2009 Dec; 34(23):3755-7. PubMed ID: 19953185
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of input field characteristics on vibrational femtosecond coherent anti-Stokes Raman scattering thermometry.
    Yang CB; He P; Escofet-Martin D; Peng JB; Fan RW; Yu X; Dunn-Rankin D
    Appl Opt; 2018 Jan; 57(2):197-207. PubMed ID: 29328164
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermometry for turbulent flames by coherent anti-Stokes Raman spectroscopy with simultaneous referencing to the modeless excitation profile.
    van Veen EH; Roekaerts D
    Appl Opt; 2005 Nov; 44(32):6995-7004. PubMed ID: 16294976
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving signal-to-interference ratio in rich hydrocarbon-air flames using picosecond coherent anti-Stokes Raman scattering.
    Meyer TR; Roy S; Gord JR
    Appl Spectrosc; 2007 Nov; 61(11):1135-40. PubMed ID: 18028690
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering.
    Miller JD; Roy S; Slipchenko MN; Gord JR; Meyer TR
    Opt Express; 2011 Aug; 19(16):15627-40. PubMed ID: 21934925
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 100-kHz-rate gas-phase thermometry using 100-ps pulses from a burst-mode laser.
    Roy S; Hsu PS; Jiang N; Slipchenko MN; Gord JR
    Opt Lett; 2015 Nov; 40(21):5125-8. PubMed ID: 26512535
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Implementation of vibrational phase contrast coherent anti-Stokes Raman scattering microscopy.
    Jurna M; Herek JL; Offerhaus HL
    Appl Opt; 2011 May; 50(13):1839-42. PubMed ID: 21532661
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Broadband single-pulse CARS spectra in a fired internal combustion engine.
    Klick D; Marko KA; Rimai L
    Appl Opt; 1981 Apr; 20(7):1178-81. PubMed ID: 20309282
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental comparison of broadband rotational coherent anti-Stokes Raman scattering (CARS) and broadband vibrational CARS in a flame.
    Zheng JB; Snow JB; Murphy DV; Leipertz A; Chang RK; Farrow RL
    Opt Lett; 1984 Aug; 9(8):341-3. PubMed ID: 19721592
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra.
    Prince BD; Chakraborty A; Prince BM; Stauffer HU
    J Chem Phys; 2006 Jul; 125(4):44502. PubMed ID: 16942151
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two-plane two-dimensional Rayleigh thermometry technique for turbulent combustion.
    Mansour MS
    Opt Lett; 1993 Apr; 18(7):537-9. PubMed ID: 19802193
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.