BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 21052595)

  • 1. A "turn-on" electrochemiluminescent biosensor for detecting Hg2+ at femtomole level based on the intercalation of Ru(phen)3(2+) into ds-DNA.
    Tang CX; Zhao Y; He XW; Yin XB
    Chem Commun (Camb); 2010 Dec; 46(47):9022-4. PubMed ID: 21052595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A sensitive, non-damaging electrochemiluminescent aptasensor via a low potential approach at DNA-modified gold electrodes.
    Liu DY; Xin YY; He XW; Yin XB
    Analyst; 2011 Feb; 136(3):479-85. PubMed ID: 20938512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA biosensor based on the electrochemiluminescence of Ru(bpy)3(2+) with DNA-binding intercalators.
    Lee JG; Yun K; Lim GS; Lee SE; Kim S; Park JK
    Bioelectrochemistry; 2007 May; 70(2):228-34. PubMed ID: 17079194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-free electrochemiluminescent aptasensor with attomolar mass detection limits based on a Ru(phen)(3)(2+)-double-strand DNA composite film electrode.
    Yin XB; Xin YY; Zhao Y
    Anal Chem; 2009 Nov; 81(22):9299-305. PubMed ID: 19827791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemiluminescent lead biosensor based on GR-5 lead-dependent DNAzyme for Ru(phen)3(2+) intercalation and lead recognition.
    Gao A; Tang CX; He XW; Yin XB
    Analyst; 2013 Jan; 138(1):263-8. PubMed ID: 23120751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A highly sensitive and selective "signal-on" electrochemiluminescent biosensor for mercury.
    Zhu X; Chen L; Lin Z; Qiu B; Chen G
    Chem Commun (Camb); 2010 May; 46(18):3149-51. PubMed ID: 20424756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Symmetrical dinuclear complexes with high DNA affinity based on [Ru(dpq)2(phen)]2+.
    Aldrich-Wright J; Brodie C; Glazer EC; Luedtke NW; Elson-Schwab L; Tor Y
    Chem Commun (Camb); 2004 Apr; (8):1018-9. PubMed ID: 15069523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A facile and sensitive electrochemiluminescence biosensor for Hg2+ analysis based on a dual-function oligonucleotide probe.
    Huang RF; Liu HX; Gai QQ; Liu GJ; Wei Z
    Biosens Bioelectron; 2015 Sep; 71():194-199. PubMed ID: 25909339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemiluminescent biosensor of ATP using tetrahedron structured DNA and a functional oligonucleotide for Ru(phen)3(2+) intercalation and target identification.
    Bu NN; Gao A; He XW; Yin XB
    Biosens Bioelectron; 2013 May; 43():200-4. PubMed ID: 23313611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly sensitive electrochemiluminescence displacement method for the study of DNA/small molecule binding interactions.
    Huang R; Wang LR; Guo LH
    Anal Chim Acta; 2010 Aug; 676(1-2):41-5. PubMed ID: 20800740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyte-induced formation of partial duplexes for the preparation of a label-free electrochemiluminescent aptasensor.
    Zhao Y; He XW; Yin XB
    Chem Commun (Camb); 2011 Jun; 47(22):6419-21. PubMed ID: 21556396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A DNA biosensor based on the electrocatalytic oxidation of amine by a threading intercalator.
    Gao Z; Tansil N
    Anal Chim Acta; 2009 Mar; 636(1):77-82. PubMed ID: 19231359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly sensitive electrochemiluminescent biosensor for adenosine based on structure-switching of aptamer.
    Zhu X; Zhang Y; Yang W; Liu Q; Lin Z; Qiu B; Chen G
    Anal Chim Acta; 2011 Jan; 684(1-2):121-5. PubMed ID: 21167993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly sensitive and selective photoelectrochemical DNA sensor for the detection of Hg²⁺ in aqueous solutions.
    Zhang B; Guo LH
    Biosens Bioelectron; 2012; 37(1):112-5. PubMed ID: 22626830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Label-free electrogenerated chemiluminescence biosensing method for trace bleomycin detection based on a Ru(phen)3(2+)-hairpin DNA composite film electrode.
    Li Y; Huang C; Zheng J; Qi H; Cao W; Wei Y
    Biosens Bioelectron; 2013 Jun; 44():177-82. PubMed ID: 23425557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chiral discrimination in the binding of tris(phenanthroline)ruthenium(II) to calf thymus DNA: an electrochemical study.
    Mahadevan S; Palaniandavar M
    Bioconjug Chem; 1996; 7(1):138-43. PubMed ID: 8742002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paper-Based Bipolar Electrode Electrochemiluminescence Switch for Label-Free and Sensitive Genetic Detection of Pathogenic Bacteria.
    Liu H; Zhou X; Liu W; Yang X; Xing D
    Anal Chem; 2016 Oct; 88(20):10191-10197. PubMed ID: 27633711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction studies of DNA binding of ruthenium(II) mixed-ligand complexes: [Ru(phen)2(dtmi)]2+ and [Ru(phen)2(dtni)]2+.
    Liu YJ; Wei XY; Wu FH; Mei WJ; He LX
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jun; 70(1):171-6. PubMed ID: 17825604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proximity Hybridization-Regulated Immunoassay for Cell Surface Protein and Protein-Overexpressing Cancer Cells via Electrochemiluminescence.
    Wang X; Gao H; Qi H; Gao Q; Zhang C
    Anal Chem; 2018 Mar; 90(5):3013-3018. PubMed ID: 29433314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Ru(bpy)2(dcbpy)NHS] labeling/aptamer-based biosensor for the detection of lysozyme by increasing sensitivity with gold nanoparticle amplification.
    Bai J; Wei H; Li B; Song L; Fang L; Lv Z; Zhou W; Wang E
    Chem Asian J; 2008 Nov; 3(11):1935-41. PubMed ID: 18767101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.