These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 21052645)

  • 1. A new bacterial biosensor for trichloroethylene detection based on a three-dimensional carbon nanotubes bioarchitecture.
    Hnaien M; Lagarde F; Bausells J; Errachid A; Jaffrezic-Renault N
    Anal Bioanal Chem; 2011 May; 400(4):1083-92. PubMed ID: 21052645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation analyses of trichloroethylene (TCE) by bacteria and its use for biosensing of TCE.
    Chee GJ
    Talanta; 2011 Sep; 85(4):1778-82. PubMed ID: 21872018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Miniaturised enzymatic conductometric biosensor with Nafion membrane for the direct determination of formaldehyde in water samples.
    Nguyen-Boisse TT; Saulnier J; Jaffrezic-Renault N; Lagarde F
    Anal Bioanal Chem; 2014 Feb; 406(4):1039-48. PubMed ID: 23907681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of trichloroethylene and toluene toxicity to Pseudomonas putida F1.
    Singh R; Olson MS
    Environ Toxicol Chem; 2010 Jan; 29(1):56-63. PubMed ID: 20821419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time reverse transcription PCR analysis of trichloroethylene-regulated toluene dioxygenase expression in Pseudomonas putida F1.
    Liu JB; Amemiya T; Chang Q; Xu X; Itoh K
    J Environ Sci Health B; 2011; 46(4):294-300. PubMed ID: 21500075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toluene dioxygenase expression correlates with trichloroethylene degradation capacity in Pseudomonas putida F1 cultures.
    Liu J; Amemiya T; Chang Q; Qian Y; Itoh K
    Biodegradation; 2012 Sep; 23(5):683-91. PubMed ID: 22350420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hazardous organic compounds in groundwater near Tehran automobile industry.
    Dobaradaran S; Mahvi AH; Nabizadeh R; Mesdaghinia A; Naddafi K; Yunesian M; Rastkari N; Nazmara S
    Bull Environ Contam Toxicol; 2010 Nov; 85(5):530-3. PubMed ID: 21069286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural attenuation of trichloroethylene in fractured shale bedrock.
    Lenczewski M; Jardine P; McKay L; Layton A
    J Contam Hydrol; 2003 Jul; 64(3-4):151-68. PubMed ID: 12814878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing trichloroethylene degradation using non-aromatic compounds as growth substrates.
    Kim S; Hwang J; Chung J; Bae W
    J Hazard Mater; 2014 Jun; 275():99-106. PubMed ID: 24857894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergetic degradation of Fe/Cu/C for groundwater polluted by trichloroethylene.
    Zhang W; Li L; Lin K; Xiong B; Li B; Lu S; Guo M; Cui X
    Water Sci Technol; 2012; 65(12):2258-64. PubMed ID: 22643424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerobic TCE degradation by encapsulated toluene-oxidizing bacteria, Pseudomonas putida and Bacillus spp.
    Kim S; Bae W; Hwang J; Park J
    Water Sci Technol; 2010; 62(9):1991-7. PubMed ID: 21045323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flux-based assessment at a manufacturing site contaminated with trichloroethylene.
    Basu NB; Rao PS; Poyer IC; Annable MD; Hatfield K
    J Contam Hydrol; 2006 Jun; 86(1-2):105-27. PubMed ID: 16581154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerobic biodegradation of trichloroethylene and phenol co-contaminants in groundwater by a bacterial community using hydrogen peroxide as the sole oxygen source.
    Li H; Zhang SY; Wang XL; Yang J; Gu JD; Zhu RL; Wang P; Lin KF; Liu YD
    Environ Technol; 2015; 36(5-8):667-74. PubMed ID: 25220534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly sensitive biosensor based on bionanomultilayer with water-soluble multiwall carbon nanotubes for determination of phenolics.
    Liu L; Zhang F; Xi F; Lin X
    Biosens Bioelectron; 2008 Oct; 24(2):306-12. PubMed ID: 18499431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benzene analysis in workplace air using an FIA-based bacterial biosensor.
    Lanyon YH; Marrazza G; Tothill IE; Mascini M
    Biosens Bioelectron; 2005 Apr; 20(10):2089-96. PubMed ID: 15741079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of cometabolic biodegradation of trichloroethylene (TCE) gas in biofiltration.
    Jung IG; Park OH
    J Biosci Bioeng; 2005 Dec; 100(6):657-61. PubMed ID: 16473776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-occurrence of 1,4-dioxane with trichloroethylene in chlorinated solvent groundwater plumes at US Air Force installations: Fact or fiction.
    Anderson RH; Anderson JK; Bower PA
    Integr Environ Assess Manag; 2012 Oct; 8(4):731-7. PubMed ID: 22492728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida.
    Chen YM; Lin TF; Huang C; Lin JC; Hsieh FM
    J Hazard Mater; 2007 Sep; 148(3):660-70. PubMed ID: 17434262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone.
    Rivett MO; Dearden RA; Wealthall GP
    J Contam Hydrol; 2014 Dec; 170():95-115. PubMed ID: 25444120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of 1,4-dioxane: effects of enzyme inducers and trichloroethylene.
    Hand S; Wang B; Chu KH
    Sci Total Environ; 2015 Jul; 520():154-9. PubMed ID: 25813968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.