These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 21052645)

  • 21. Methanogenic community development in anaerobic granular bioreactors treating trichloroethylene (TCE)-contaminated wastewater at 37 °C and 15 °C.
    Siggins A; Enright AM; O'Flaherty V
    Water Res; 2011 Apr; 45(8):2452-62. PubMed ID: 21396675
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stable and sensitive flow-through monitoring of phenol using a carbon nanotube based screen printed biosensor.
    Alarcón G; Guix M; Ambrosi A; Ramirez Silva MT; Palomar Pardave ME; Merkoçi A
    Nanotechnology; 2010 Jun; 21(24):245502. PubMed ID: 20498520
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of computational models to reconstruct and predict trichloroethylene exposure.
    Maslia ML; Aral MM; Williams RC; Williams-Fleetwood S; Hayes LC; Wilder LC
    Toxicol Ind Health; 1996; 12(2):139-52. PubMed ID: 8794528
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Natural attenuation of trichloroethene and its degradation products at a lake-shore site.
    An YJ; Kampbell DH; Weaver JW; Wilson JT; Jeong SW
    Environ Pollut; 2004 Aug; 130(3):325-35. PubMed ID: 15182966
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of polycolloid-releasing substrate to remediate trichloroethylene-contaminated groundwater: a pilot-scale study.
    Tsai TT; Liu JK; Chang YM; Chen KF; Kao CM
    J Hazard Mater; 2014 Mar; 268():92-101. PubMed ID: 24468531
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced biotransformation of TCE using plant terpenoids in contaminated groundwater.
    Brown JR; Thompson IP; Paton GI; Singer AC
    Lett Appl Microbiol; 2009 Dec; 49(6):769-74. PubMed ID: 19843209
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Monitoring trichloroethene remediation at an iron permeable reactive barrier using stable carbon isotopic analysis.
    VanStone N; Przepiora A; Vogan J; Lacrampe-Couloume G; Powers B; Perez E; Mabury S; Sherwood Lollar B
    J Contam Hydrol; 2005 Aug; 78(4):313-25. PubMed ID: 16026893
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A rapid and sensitive alcohol oxidase/catalase conductometric biosensor for alcohol determination.
    Hnaien M; Lagarde F; Jaffrezic-Renault N
    Talanta; 2010 Apr; 81(1-2):222-7. PubMed ID: 20188912
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dual carbon-chlorine stable isotope investigation of sources and fate of chlorinated ethenes in contaminated groundwater.
    Wiegert C; Aeppli C; Knowles T; Holmstrand H; Evershed R; Pancost RD; Macháčková J; Gustafsson Ö
    Environ Sci Technol; 2012 Oct; 46(20):10918-25. PubMed ID: 22989309
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biological removal of the xenobiotic trichloroethylene (TCE) through cometabolism in nitrifying systems.
    Kocamemi BA; Ceçen F
    Bioresour Technol; 2010 Jan; 101(1):430-3. PubMed ID: 19729301
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Potential of the Ni-Resistant TCE-Degrading Pseudomonas putida W619-TCE to Reduce Phytotoxicity and Improve Phytoremediation Efficiency of Poplar Cuttings on A Ni-TCE Co-Contamination.
    Weyens N; Beckers B; Schellingen K; Ceulemans R; van der Lelie D; Newman L; Taghavi S; Carleer R; Vangronsveld J
    Int J Phytoremediation; 2015; 17(1-6):40-8. PubMed ID: 25174423
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microbial community structure and trichloroethylene degradation in groundwater.
    Humphries JA; Ashe AM; Smiley JA; Johnston CG
    Can J Microbiol; 2005 Jun; 51(6):433-9. PubMed ID: 16121220
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida.
    Chen YM; Lin TF; Huang C; Lin JC
    Chemosphere; 2008 Aug; 72(11):1671-80. PubMed ID: 18586301
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantification of bacterial chemotaxis in porous media using magnetic resonance imaging.
    Olson MS; Ford RM; Smith JA; Fernandez EJ
    Environ Sci Technol; 2004 Jul; 38(14):3864-70. PubMed ID: 15298194
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly sensitive amperometric biosensor based on alcohol dehydrogenase for determination of glycerol in human urine.
    Ramonas E; Ratautas D; Dagys M; Meškys R; Kulys J
    Talanta; 2019 Aug; 200():333-339. PubMed ID: 31036193
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Control of trichloroethylene plume migration using a biobarrier system: a field-scale study.
    Kuo YC; Wang SY; Chang YM; Chen SH; Kao CM
    Water Sci Technol; 2014; 69(10):2074-8. PubMed ID: 24845323
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of carbon stable isotope to investigate chloromethane formation in the electrolytic dechlorination of trichloroethylene.
    Fang Y; Al-Abed SR
    J Hazard Mater; 2007 Mar; 141(3):729-35. PubMed ID: 16949745
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activity-dependent labeling of oxygenase enzymes in a trichloroethene-contaminated groundwater site.
    Lee MH; Clingenpeel SC; Leiser OP; Wymore RA; Sorenson KS; Watwood ME
    Environ Pollut; 2008 May; 153(1):238-46. PubMed ID: 17904715
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cometabolic microbial degradation of trichloroethylene in the presence of toluene.
    Sui H; Li XG; Xu SM
    J Environ Sci (China); 2004; 16(3):487-9. PubMed ID: 15272729
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fiber optic monooxygenase biosensor for toluene concentration measurement in aqueous samples.
    Zhong Z; Fritzsche M; Pieper SB; Wood TK; Lear KL; Dandy DS; Reardon KF
    Biosens Bioelectron; 2011 Jan; 26(5):2407-12. PubMed ID: 21081273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.