BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 21052811)

  • 1. Spectral investigations on N-(2-methylthiophenyl)-2-hydroxy-1-naphthaldimine by silver nanoparticles: quenching.
    Manikandan P; Ramakrishnan V
    J Fluoresc; 2011 Mar; 21(2):693-9. PubMed ID: 21052811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of silver nanoparticles on 2,3-bis(chloromethyl)anthracene-1,4,9,10-tetraone.
    Umadevi M; Sridevi NA; Sharmila AS; Rajkumar BJ; Mary MB; Vanelle P; Terme T; Khoumeri O
    J Fluoresc; 2010 Jan; 20(1):153-61. PubMed ID: 19705260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence quenching of 1,4-dihydroxy-2,3-dimethyl-9,10-anthraquinone by silver nanoparticles: size effect.
    Umadevi M; Vanelle P; Terme T; Rajkumar BJ; Ramakrishnan V
    J Fluoresc; 2009 Jan; 19(1):3-10. PubMed ID: 18642066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoinduced interaction studies on N-(2-methylthiophenyl)-2-hydroxy-1-naphthadiamine with TiO2 nanoparticles: a combined experimental and theoretical (DFT and spectroscopic) approach.
    Pushpam S; Gayathri S; Ramakrishnan V
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():80-6. PubMed ID: 24929319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The quenching effect of silver nanoparticles on 2-amino-3-bromo-1, 4-naphthoquinone using fluorescence spectroscopy.
    Manikandan P; Pushpam S; Sasirekha V; Rani JS; Ramakrishnan V
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():276-81. PubMed ID: 24252292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of role of silver nanoparticles on spectroscopic properties of biologically active coumarin dyes 4PTMBC and 1IPMBC.
    Raghavendra UP; Basanagouda M; Thipperudrappa J
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 150():350-9. PubMed ID: 26056986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic studies of 1,4-dimethoxy-2,3-dimethylanthracene-9,10-dione on plasmonic silver nanoparticles.
    Kavitha SR; Umadevi M; Vanelle P; Terme T; Khoumeri O; Sridhar B
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():472-9. PubMed ID: 24973788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the Effect of Silver Nanoparticles on the Fluorescence Intensity of Bambuterol and its Active Metabolite Terbutaline Using FRET.
    Abd Elhaleem SM; Elsebaei F; Shalan S; Belal F
    J Fluoresc; 2023 Sep; 33(5):1717-1725. PubMed ID: 36826730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of glucose-derived carbon quantum dots with silver and gold nanoparticles and its application for the fluorescence detection of 6-thioguanine.
    Amjadi M; Shokri R; Hallaj T
    Luminescence; 2017 May; 32(3):292-297. PubMed ID: 27406471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorimetric Studies of a Transmembrane Protein and Its Interactions with Differently Functionalized Silver Nanoparticles.
    Gambucci M; Tarpani L; Zampini G; Massaro G; Nocchetti M; Sassi P; Latterini L
    J Phys Chem B; 2018 Jul; 122(27):6872-6879. PubMed ID: 29911868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical ascorbic acid sensor based on the fluorescence quenching of silver nanoparticles.
    Park HW; Alam SM; Lee SH; Karim MM; Wabaidur SM; Kang M; Choi JH
    Luminescence; 2009; 24(6):367-71. PubMed ID: 19424962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic studies of interaction between biologically synthesized silver nanoparticles and bovine serum albumin.
    Roy S; Das TK
    J Nanosci Nanotechnol; 2014 Jul; 14(7):4899-905. PubMed ID: 24757960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence modulation of acridine and coumarin dyes by silver nanoparticles.
    Sabatini CA; Pereira RV; Gehlen MH
    J Fluoresc; 2007 Jul; 17(4):377-82. PubMed ID: 17549612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biopolymer capped silver nanoparticles as fluorophore for ultrasensitive and selective determination of malathion.
    Vasimalai N; Abraham John S
    Talanta; 2013 Oct; 115():24-31. PubMed ID: 24054557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tautomerism in Schiff bases. The cases of 2-hydroxy-1-naphthaldehyde and 1-hydroxy-2-naphthaldehyde investigated in solution and the solid state.
    Martínez RF; Ávalos M; Babiano R; Cintas P; Jiménez JL; Light ME; Palacios JC
    Org Biomol Chem; 2011 Dec; 9(24):8268-75. PubMed ID: 22042218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size-controlled and optical properties of monodispersed silver nanoparticles synthesized by the radiolytic reduction method.
    Saion E; Gharibshahi E; Naghavi K
    Int J Mol Sci; 2013 Apr; 14(4):7880-96. PubMed ID: 23579953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein interactions with silver nanoparticles: Green synthesis, and biophysical approach.
    Al-Thabaiti NS; Malik MA; Khan Z
    Int J Biol Macromol; 2017 Feb; 95():421-428. PubMed ID: 27884676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green synthesis of biogenic silver nanoparticles using Solanum tuberosum extract and their interaction with human serum albumin: Evidence of "corona" formation through a multi-spectroscopic and molecular docking analysis.
    Ali MS; Altaf M; Al-Lohedan HA
    J Photochem Photobiol B; 2017 Aug; 173():108-119. PubMed ID: 28570906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of triangular silver nanoprisms and spectroscopic analysis on the interaction with bovine serum albumin.
    Xu X; Du Z; Wu W; Wang Y; Zhang B; Mao X; Jiang L; Yang J; Hou S
    Anal Bioanal Chem; 2017 Sep; 409(22):5327-5336. PubMed ID: 28687884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence modulation of 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione by silver nanoparticles and its possible analytical application.
    Patra D; Malaeb NN
    Luminescence; 2012; 27(1):11-5. PubMed ID: 21608103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.