BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 21052811)

  • 21. Sedimentation field flow fractionation and optical absorption spectroscopy for a quantitative size characterization of silver nanoparticles.
    Contado C; Argazzi R; Amendola V
    J Chromatogr A; 2016 Nov; 1471():178-185. PubMed ID: 27756476
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Preparation and Characterization of Chitosan-Poloxamer-based Antibacterial Hydrogel Containing Silver Nanoparticles].
    Li D; Yu X; Hu Y; Xi T; Chen J; Zhang Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Dec; 33(6):1124-32. PubMed ID: 29714977
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction of Schiff base ligand with tin dioxide nanoparticles: optical studies.
    Rani JS; Ramakrishnan V
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct; 114():170-4. PubMed ID: 23770505
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the fluorescence of luminol in a silver nanoparticles complex.
    Voicescu M; Ionescu S
    J Fluoresc; 2013 May; 23(3):569-74. PubMed ID: 23463296
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of spectroscopic and zeta potential techniques to study the interaction between lysozyme and curcumin in the presence of silver nanoparticles at different sizes.
    Kamshad M; Jahanshah Talab M; Beigoli S; Sharifirad A; Chamani J
    J Biomol Struct Dyn; 2019 May; 37(8):2030-2040. PubMed ID: 29757090
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of pH on interaction of silver nanoparticles - protein: Analyses by spectroscopic and thermodynamic ideology.
    Siddiq AM; Murugan D; Srivastava R; Alam MS
    Colloids Surf B Biointerfaces; 2019 Dec; 184():110524. PubMed ID: 31586899
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective recognition of cobalt (II) ion by a new cryptand compound with N2O2S2 donor atom possessing 2-hydroxy-1-naphthylidene Schiff base moiety.
    Başoğlu A; Parlayan S; Ocak M; Alp H; Kantekin H; Ozdemir M; Ocak U
    J Fluoresc; 2009 Jul; 19(4):655-62. PubMed ID: 19132516
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selective fluorescence sensing of Cu(II) and Zn(II) using a simple Schiff base ligand: naked eye detection and elucidation of photoinduced electron transfer (PET) mechanism.
    Ganguly A; Ghosh S; Kar S; Guchhait N
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 May; 143():72-80. PubMed ID: 25721777
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction of metal nanoparticles with recombinant arginine kinase from Trypanosoma brucei: thermodynamic and spectrofluorimetric evaluation.
    Adeyemi OS; Whiteley CG
    Biochim Biophys Acta; 2014 Jan; 1840(1):701-6. PubMed ID: 24184914
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human serum albumin-malathion complex study in the presence of silver nanoparticles at different sizes by multi spectroscopic techniques.
    Baghaee PT; Divsalar A; Chamani J; Donya A
    J Biomol Struct Dyn; 2019 Jun; 37(9):2254-2264. PubMed ID: 30035667
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Communication: Reactions and adsorption at the surface of silver nanoparticles probed by second harmonic generation.
    Gan W; Gonella G; Zhang M; Dai HL
    J Chem Phys; 2011 Jan; 134(4):041104. PubMed ID: 21280679
    [TBL] [Abstract][Full Text] [Related]  

  • 32. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff.
    Mahajan PG; Bhopate DP; Kolekar GB; Patil SR
    J Fluoresc; 2016 Jul; 26(4):1467-78. PubMed ID: 27246163
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spectroscopy property of Ag nanoparticles.
    Zhao Y; Jiang Y; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Dec; 65(5):1003-6. PubMed ID: 16716648
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hollow-fiber flow field-flow fractionation and multi-angle light scattering investigation of the size, shape and metal-release of silver nanoparticles in aqueous medium for nano-risk assessment.
    Marassi V; Casolari S; Roda B; Zattoni A; Reschiglian P; Panzavolta S; Tofail SA; Ortelli S; Delpivo C; Blosi M; Costa AL
    J Pharm Biomed Anal; 2015 Mar; 106():92-9. PubMed ID: 25698553
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quenching of Luminol Fluorescence at Nano-Bio Interface: Towards the Development of an Efficient Energy Transfer System.
    Sonu VK; Mitra S
    J Fluoresc; 2019 Jan; 29(1):165-176. PubMed ID: 30519975
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photophysical properties of Schiff's bases from 3-(1,3-benzothiazol-2-yl)-2-hydroxy naphthalene-1-carbaldehyde.
    Satam MA; Telore RD; Sekar N
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Nov; 132():678-86. PubMed ID: 24907971
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis, characterization and SERS activity of biosynthesized silver nanoparticles.
    Bindhu MR; Sathe V; Umadevi M
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Nov; 115():409-15. PubMed ID: 23867642
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Light scattering from 2D arrays of monodispersed Ag-nanoparticles separated by tunable nano-gaps: spectral evolution and analytical analysis of plasmonic coupling.
    Biring S; Wang HH; Wang JK; Wang YL
    Opt Express; 2008 Sep; 16(20):15312-24. PubMed ID: 18825167
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bio-synthesis and antimicrobial activity of silver nanoparticles using anaerobically digested parthenium slurry.
    Adur AJ; Nandini N; Shilpashree Mayachar K; Ramya R; Srinatha N
    J Photochem Photobiol B; 2018 Jun; 183():30-34. PubMed ID: 29684718
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dual Fluorescence-colorimetric Silver Nanoparticles Based Sensor for Determination of Olanzapine: Analysis in Rat Plasma and Pharmaceuticals.
    Chavada VD; Bhatt NM; Sanyal M; Shrivastav PS
    J Fluoresc; 2020 Jul; 30(4):955-967. PubMed ID: 32548705
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.