These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 21052853)

  • 1. Strain rate-dependent viscohyperelastic constitutive modeling of bovine liver tissue.
    Roan E; Vemaganti K
    Med Biol Eng Comput; 2011 Apr; 49(4):497-506. PubMed ID: 21052853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nonlinear material properties of liver tissue determined from no-slip uniaxial compression experiments.
    Roan E; Vemaganti K
    J Biomech Eng; 2007 Jun; 129(3):450-6. PubMed ID: 17536913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rate-dependent constitutive modeling of brain tissue.
    Hosseini-Farid M; Ramzanpour M; McLean J; Ziejewski M; Karami G
    Biomech Model Mechanobiol; 2020 Apr; 19(2):621-632. PubMed ID: 31612343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A constitutive model of the posterior cruciate ligament.
    Limbert G; Middleton J
    Med Eng Phys; 2006 Mar; 28(2):99-113. PubMed ID: 15919227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling and simulation of porcine liver tissue indentation using finite element method and uniaxial stress-strain data.
    Fu YB; Chui CK
    J Biomech; 2014 Jul; 47(10):2430-5. PubMed ID: 24811044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical behavior of bovine periodontal ligament: Experimental tests and constitutive model.
    Oskui IZ; Hashemi A; Jafarzadeh H
    J Mech Behav Biomed Mater; 2016 Sep; 62():599-606. PubMed ID: 27315371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A transversely isotropic viscohyperelastic-damage model for the brain tissue with strain rate sensitivity.
    He G; Fan L
    J Biomech; 2023 Apr; 151():111554. PubMed ID: 36958091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biphasic viscohyperelastic fibril-reinforced model for articular cartilage: formulation and comparison with experimental data.
    García JJ; Cortés DH
    J Biomech; 2007; 40(8):1737-44. PubMed ID: 17014853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constitutive modeling of human liver based on in vivo measurements.
    Mazza E; Grau P; Hollenstein M; Bajka M
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):726-33. PubMed ID: 18982669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constitutive model for brain tissue under finite compression.
    Laksari K; Shafieian M; Darvish K
    J Biomech; 2012 Feb; 45(4):642-6. PubMed ID: 22281404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A nonlinear anisotropic viscoelastic model for the tensile behavior of the corneal stroma.
    Nguyen TD; Jones RE; Boyce BL
    J Biomech Eng; 2008 Aug; 130(4):041020. PubMed ID: 18601462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Logarithmic rate based elasto-viscoplastic cyclic constitutive model for soft biological tissues.
    Zhu Y; Kang G; Yu C; Poh LH
    J Mech Behav Biomed Mater; 2016 Aug; 61():397-409. PubMed ID: 27108349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Material characterization of liver parenchyma using specimen-specific finite element models.
    Untaroiu CD; Lu YC
    J Mech Behav Biomed Mater; 2013 Oct; 26():11-22. PubMed ID: 23800843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A poro-hyper-viscoelastic rate-dependent constitutive modeling for the analysis of brain tissues.
    Hosseini-Farid M; Ramzanpour M; McLean J; Ziejewski M; Karami G
    J Mech Behav Biomed Mater; 2020 Feb; 102():103475. PubMed ID: 31627069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues.
    Sun W; Sacks MS
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing Strain Rate-Dependent Mechanical Properties for Bovine Cortical Bones.
    Lei J; Li L; Wang Z; Zhu F
    J Biomech Eng; 2020 Sep; 142(9):. PubMed ID: 32191273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poroviscoelastic finite element model including continuous fiber distribution for the simulation of nanoindentation tests on articular cartilage.
    Taffetani M; Griebel M; Gastaldi D; Klisch SM; Vena P
    J Mech Behav Biomed Mater; 2014 Apr; 32():17-30. PubMed ID: 24389384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A parameter reduced adaptive quasi-linear viscoelastic model for soft biological tissue in uniaxial tension.
    Aryeetey OJ; Frank M; Lorenz A; Estermann SJ; Reisinger AG; Pahr DH
    J Mech Behav Biomed Mater; 2022 Feb; 126():104999. PubMed ID: 34999491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A constitutive model for ballistic gelatin at surgical strain rates.
    Ravikumar N; Noble C; Cramphorn E; Taylor ZA
    J Mech Behav Biomed Mater; 2015 Jul; 47():87-94. PubMed ID: 25863009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.