BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 2105292)

  • 1. Induction of levansucrase in Bacillus subtilis: an antitermination mechanism negatively controlled by the phosphotransferase system.
    Crutz AM; Steinmetz M; Aymerich S; Richter R; Le Coq D
    J Bacteriol; 1990 Feb; 172(2):1043-50. PubMed ID: 2105292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcription of the Bacillus subtilis sacX and sacY genes, encoding regulators of sucrose metabolism, is both inducible by sucrose and controlled by the DegS-DegU signalling system.
    Crutz AM; Steinmetz M
    J Bacteriol; 1992 Oct; 174(19):6087-95. PubMed ID: 1400159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple phosphorylation of SacY, a Bacillus subtilis transcriptional antiterminator negatively controlled by the phosphotransferase system.
    Tortosa P; Aymerich S; Lindner C; Saier MH; Reizer J; Le Coq D
    J Biol Chem; 1997 Jul; 272(27):17230-7. PubMed ID: 9202047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A ribonucleic antiterminator sequence (RAT) and a distant palindrome are both involved in sucrose induction of the Bacillus subtilis sacXY regulatory operon.
    Tortosa P; Le Coq D
    Microbiology (Reading); 1995 Nov; 141 ( Pt 11)():2921-7. PubMed ID: 8535520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleotide sequence of the sacS locus of Bacillus subtilis reveals the presence of two regulatory genes.
    Zukowski MM; Miller L; Cosgwell P; Chen K; Aymerich S; Steinmetz M
    Gene; 1990 May; 90(1):153-5. PubMed ID: 2116367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of saccharolytic enzymes by sucrose in Bacillus subtilis: evidence for two partially interchangeable regulatory pathways.
    Steinmetz M; Le Coq D; Aymerich S
    J Bacteriol; 1989 Mar; 171(3):1519-23. PubMed ID: 2493447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the sacPA operon of Bacillus subtilis: identification of phosphotransferase system components involved in SacT activity.
    Arnaud M; Vary P; Zagorec M; Klier A; Debarbouille M; Postma P; Rapoport G
    J Bacteriol; 1992 May; 174(10):3161-70. PubMed ID: 1577686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning and preliminary characterization of the sacS locus from Bacillus subtilis which controls the regulation of the exoenzyme levansucrase.
    Aymerich S; Steinmetz M
    Mol Gen Genet; 1987 Jun; 208(1-2):114-20. PubMed ID: 3039303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SacY, a transcriptional antiterminator from Bacillus subtilis, is regulated by phosphorylation in vivo.
    Idelson M; Amster-Choder O
    J Bacteriol; 1998 Feb; 180(3):660-6. PubMed ID: 9457872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sites of positive and negative regulation in the Bacillus subtilis antiterminators LicT and SacY.
    Tortosa P; Declerck N; Dutartre H; Lindner C; Deutscher J; Le Coq D
    Mol Microbiol; 2001 Sep; 41(6):1381-93. PubMed ID: 11580842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New beta-glucoside (bgl) genes in Bacillus subtilis: the bglP gene product has both transport and regulatory functions similar to those of BglF, its Escherichia coli homolog.
    Le Coq D; Lindner C; Krüger S; Steinmetz M; Stülke J
    J Bacteriol; 1995 Mar; 177(6):1527-35. PubMed ID: 7883710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of the putative bglPH operon for aryl-beta-glucoside utilization in Bacillus subtilis.
    Krüger S; Hecker M
    J Bacteriol; 1995 Oct; 177(19):5590-7. PubMed ID: 7559347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual effect of a Tn917 insertion into the Bacillus subtilis sacX gene.
    Le Coq D; Aymerich S; Steinmetz M
    J Gen Microbiol; 1991 Jan; 137(1):101-6. PubMed ID: 1646271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiterminators.
    Debarbouille M; Arnaud M; Fouet A; Klier A; Rapoport G
    J Bacteriol; 1990 Jul; 172(7):3966-73. PubMed ID: 2163394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphoenolpyruvate:sugar phosphotransferase system of Bacillus subtilis: cloning of the region containing the ptsH and ptsI genes and evidence for a crr-like gene.
    Gonzy-Tréboul G; Steinmetz M
    J Bacteriol; 1987 May; 169(5):2287-90. PubMed ID: 3106335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The DNA sequence of the gene for the secreted Bacillus subtilis enzyme levansucrase and its genetic control sites.
    Steinmetz M; Le Coq D; Aymerich S; Gonzy-Tréboul G; Gay P
    Mol Gen Genet; 1985; 200(2):220-8. PubMed ID: 2993818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specificity determinants and structural features in the RNA target of the bacterial antiterminator proteins of the BglG/SacY family.
    Aymerich S; Steinmetz M
    Proc Natl Acad Sci U S A; 1992 Nov; 89(21):10410-4. PubMed ID: 1279678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The HPr protein of the phosphotransferase system links induction and catabolite repression of the Bacillus subtilis levanase operon.
    Stülke J; Martin-Verstraete I; Charrier V; Klier A; Deutscher J; Rapoport G
    J Bacteriol; 1995 Dec; 177(23):6928-36. PubMed ID: 7592487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of Bacillus subtilis levansucrase gene expression by sucrose and regulation of the steady-state mRNA level by sacU and sacQ genes.
    Shimotsu H; Henner DJ
    J Bacteriol; 1986 Oct; 168(1):380-8. PubMed ID: 2428811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 5'-noncoding region sacR is the target of all identified regulation affecting the levansucrase gene in Bacillus subtilis.
    Aymerich S; Gonzy-Tréboul G; Steinmetz M
    J Bacteriol; 1986 Jun; 166(3):993-8. PubMed ID: 3086292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.