These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
345 related articles for article (PubMed ID: 2105305)
21. A null mutation in the Bacillus subtilis aconitase gene causes a block in Spo0A-phosphate-dependent gene expression. Craig JE; Ford MJ; Blaydon DC; Sonenshein AL J Bacteriol; 1997 Dec; 179(23):7351-9. PubMed ID: 9393699 [TBL] [Abstract][Full Text] [Related]
22. Multiple mechanisms contribute to osmotic inducibility of proU operon expression in Escherichia coli: demonstration of two osmoresponsive promoters and of a negative regulatory element within the first structural gene. Dattananda CS; Rajkumari K; Gowrishankar J J Bacteriol; 1991 Dec; 173(23):7481-90. PubMed ID: 1938945 [TBL] [Abstract][Full Text] [Related]
23. Modulation of Bacillus subtilis catabolite repression by transition state regulatory protein AbrB. Fisher SH; Strauch MA; Atkinson MR; Wray LV J Bacteriol; 1994 Apr; 176(7):1903-12. PubMed ID: 8144456 [TBL] [Abstract][Full Text] [Related]
24. Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis. Deutscher J; Reizer J; Fischer C; Galinier A; Saier MH; Steinmetz M J Bacteriol; 1994 Jun; 176(11):3336-44. PubMed ID: 8195089 [TBL] [Abstract][Full Text] [Related]
25. A promoter whose utilization is temporally regulated during sporulation in Bacillus subtilis. Stephens MA; Lang N; Sandman K; Losick R J Mol Biol; 1984 Jul; 176(3):333-48. PubMed ID: 6205155 [TBL] [Abstract][Full Text] [Related]
26. Regulation of citB expression in Bacillus subtilis: integration of multiple metabolic signals in the citrate pool and by the general nitrogen regulatory system. Blencke HM; Reif I; Commichau FM; Detsch C; Wacker I; Ludwig H; Stülke J Arch Microbiol; 2006 Mar; 185(2):136-46. PubMed ID: 16395550 [TBL] [Abstract][Full Text] [Related]
27. Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. Weickert MJ; Chambliss GH Proc Natl Acad Sci U S A; 1990 Aug; 87(16):6238-42. PubMed ID: 2117276 [TBL] [Abstract][Full Text] [Related]
28. Transcriptional regulation of Bacillus subtilis citrate synthase genes. Jin S; Sonenshein AL J Bacteriol; 1994 Aug; 176(15):4680-90. PubMed ID: 8045899 [TBL] [Abstract][Full Text] [Related]
29. Role of sigma H in expression of the fumarase gene (citG) in vegetative cells of Bacillus subtilis 168. Price VA; Feavers IM; Moir A J Bacteriol; 1989 Nov; 171(11):5933-9. PubMed ID: 2509423 [TBL] [Abstract][Full Text] [Related]
30. Analysis of Bacillus subtilis hut operon expression indicates that histidine-dependent induction is mediated primarily by transcriptional antitermination and that amino acid repression is mediated by two mechanisms: regulation of transcription initiation and inhibition of histidine transport. Wray LV; Fisher SH J Bacteriol; 1994 Sep; 176(17):5466-73. PubMed ID: 8071225 [TBL] [Abstract][Full Text] [Related]
31. Alanine dehydrogenase (ald) is required for normal sporulation in Bacillus subtilis. Siranosian KJ; Ireton K; Grossman AD J Bacteriol; 1993 Nov; 175(21):6789-96. PubMed ID: 8226620 [TBL] [Abstract][Full Text] [Related]
32. Determination of the cis sequence involved in catabolite repression of the Bacillus subtilis gnt operon; implication of a consensus sequence in catabolite repression in the genus Bacillus. Miwa Y; Fujita Y Nucleic Acids Res; 1990 Dec; 18(23):7049-53. PubMed ID: 2124676 [TBL] [Abstract][Full Text] [Related]
33. Regulation of the putative bglPH operon for aryl-beta-glucoside utilization in Bacillus subtilis. Krüger S; Hecker M J Bacteriol; 1995 Oct; 177(19):5590-7. PubMed ID: 7559347 [TBL] [Abstract][Full Text] [Related]
34. Dissection of the expression signals of the spoA gene of Bacillus subtilis: glucose represses sporulation-specific expression. Yamashita S; Kawamura F; Yoshikawa H; Takahashi H; Kobayashi Y; Saito H J Gen Microbiol; 1989 May; 135(5):1335-45. PubMed ID: 2516118 [TBL] [Abstract][Full Text] [Related]
35. Catabolite repression of beta-glucanase synthesis in Bacillus subtilis. Krüger S; Stülke J; Hecker M J Gen Microbiol; 1993 Sep; 139(9):2047-54. PubMed ID: 8245831 [TBL] [Abstract][Full Text] [Related]
36. Regulation of the Bacillus subtilis phosphotransacetylase gene. Shin BS; Choi SK; Park SH J Biochem; 1999 Aug; 126(2):333-9. PubMed ID: 10423526 [TBL] [Abstract][Full Text] [Related]
37. Bacillus subtilis aconitase is required for efficient late-sporulation gene expression. Serio AW; Pechter KB; Sonenshein AL J Bacteriol; 2006 Sep; 188(17):6396-405. PubMed ID: 16923907 [TBL] [Abstract][Full Text] [Related]
38. Regulation of anaerobic citrate metabolism in Klebsiella pneumoniae. Bott M; Meyer M; Dimroth P Mol Microbiol; 1995 Nov; 18(3):533-46. PubMed ID: 8748036 [TBL] [Abstract][Full Text] [Related]
39. Dual control of subtilin biosynthesis and immunity in Bacillus subtilis. Stein T; Borchert S; Kiesau P; Heinzmann S; Klöss S; Klein C; Helfrich M; Entian KD Mol Microbiol; 2002 Apr; 44(2):403-16. PubMed ID: 11972779 [TBL] [Abstract][Full Text] [Related]
40. Genetic analysis of the promoter region of the Bacillus subtilis alpha-amylase gene. Weickert MJ; Chambliss GH J Bacteriol; 1989 Jul; 171(7):3656-66. PubMed ID: 2500416 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]