These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
345 related articles for article (PubMed ID: 2105305)
41. Catabolite repression of the operon for xylose utilization from Bacillus subtilis W23 is mediated at the level of transcription and depends on a cis site in the xylA reading frame. Jacob S; Allmansberger R; Gärtner D; Hillen W Mol Gen Genet; 1991 Oct; 229(2):189-96. PubMed ID: 1921970 [TBL] [Abstract][Full Text] [Related]
42. Use of a new catabolite repression resistant promoter isolated from Bacillus subtilis KCC103 for hyper-production of recombinant enzymes. Nagarajan DR; Krishnan C Protein Expr Purif; 2010 Mar; 70(1):122-8. PubMed ID: 19815075 [TBL] [Abstract][Full Text] [Related]
43. Temporal regulation and forespore-specific expression of the spore photoproduct lyase gene by sigma-G RNA polymerase during Bacillus subtilis sporulation. Pedraza-Reyes M; Gutiérrez-Corona F; Nicholson WL J Bacteriol; 1994 Jul; 176(13):3983-91. PubMed ID: 8021181 [TBL] [Abstract][Full Text] [Related]
44. Promoters and transcription of the plasmid-mediated citrate-utilization system in Escherichia coli. Ishiguro N; Sasatsu M; Misra TK; Silver S Gene; 1988 Sep; 68(2):181-92. PubMed ID: 3065141 [TBL] [Abstract][Full Text] [Related]
45. Regulation of expression of genes coding for small, acid-soluble proteins of Bacillus subtilis spores: studies using lacZ gene fusions. Mason JM; Hackett RH; Setlow P J Bacteriol; 1988 Jan; 170(1):239-44. PubMed ID: 3121585 [TBL] [Abstract][Full Text] [Related]
46. Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site. Wray LV; Pettengill FK; Fisher SH J Bacteriol; 1994 Apr; 176(7):1894-902. PubMed ID: 8144455 [TBL] [Abstract][Full Text] [Related]
47. Regulation of the gltBDF operon of Escherichia coli: how is a leucine-insensitive operon regulated by the leucine-responsive regulatory protein? Ernsting BR; Denninger JW; Blumenthal RM; Matthews RG J Bacteriol; 1993 Nov; 175(22):7160-9. PubMed ID: 7901196 [TBL] [Abstract][Full Text] [Related]
48. The aconitase of Escherichia coli: purification of the enzyme and molecular cloning and map location of the gene (acn). Prodromou C; Haynes MJ; Guest JR J Gen Microbiol; 1991 Nov; 137(11):2505-15. PubMed ID: 1838390 [TBL] [Abstract][Full Text] [Related]
49. Direct and indirect roles of CcpA in regulation of Bacillus subtilis Krebs cycle genes. Kim HJ; Roux A; Sonenshein AL Mol Microbiol; 2002 Jul; 45(1):179-90. PubMed ID: 12100558 [TBL] [Abstract][Full Text] [Related]
50. Regulation of mtl operon promoter of Bacillus subtilis: requirements of its use in expression vectors. Heravi KM; Wenzel M; Altenbuchner J Microb Cell Fact; 2011 Oct; 10():83. PubMed ID: 22014119 [TBL] [Abstract][Full Text] [Related]
51. Cloning of the aconitase gene (acn) of Escherichia coli K12. Wilde RJ; Jeyaseelan K; Guest JR J Gen Microbiol; 1986 Jun; 132(6):1763-6. PubMed ID: 3543213 [TBL] [Abstract][Full Text] [Related]
52. Expression of the Bacillus subtilis xyl operon is repressed at the level of transcription and is induced by xylose. Gärtner D; Geissendörfer M; Hillen W J Bacteriol; 1988 Jul; 170(7):3102-9. PubMed ID: 2454911 [TBL] [Abstract][Full Text] [Related]
53. A general method for fusion of the Escherichia coli lacZ gene to chromosomal genes in Bacillus subtilis. Errington J J Gen Microbiol; 1986 Nov; 132(11):2953-66. PubMed ID: 3114418 [TBL] [Abstract][Full Text] [Related]
54. Regulation of the bacillus subtilis ccpC gene by ccpA and ccpC. Kim HJ; Jourlin-Castelli C; Kim SI; Sonenshein AL Mol Microbiol; 2002 Jan; 43(2):399-410. PubMed ID: 11985717 [TBL] [Abstract][Full Text] [Related]
55. Construction of a single-copy integration vector and its use in analysis of regulation of the trp operon of Bacillus subtilis. Shimotsu H; Henner DJ Gene; 1986; 43(1-2):85-94. PubMed ID: 3019840 [TBL] [Abstract][Full Text] [Related]
56. Integrative vector for constructing single-copy translational fusions between regulatory regions of Bacillus subtilis and the bgaB reporter gene encoding a heat-stable beta-galactosidase. Stoss O; Mogk A; Schumann W FEMS Microbiol Lett; 1997 May; 150(1):49-54. PubMed ID: 9163905 [TBL] [Abstract][Full Text] [Related]
57. Expression in Bacillus subtilis of the Bacillus thuringiensis cryIIIA toxin gene is not dependent on a sporulation-specific sigma factor and is increased in a spo0A mutant. Agaisse H; Lereclus D J Bacteriol; 1994 Aug; 176(15):4734-41. PubMed ID: 8045904 [TBL] [Abstract][Full Text] [Related]
58. Transcription initiation region of the srfA operon, which is controlled by the comP-comA signal transduction system in Bacillus subtilis. Nakano MM; Xia LA; Zuber P J Bacteriol; 1991 Sep; 173(17):5487-93. PubMed ID: 1715856 [TBL] [Abstract][Full Text] [Related]
59. Structure and expression of the cytochrome aa3 regulatory gene ctaA of Bacillus subtilis. Mueller JP; Taber HW J Bacteriol; 1989 Sep; 171(9):4979-86. PubMed ID: 2549007 [TBL] [Abstract][Full Text] [Related]
60. Transcriptional regulation of the Bacillus ohbensis cyclodextrin glucanotransferase gene in B. subtilis. Nishida T; Nakamura A; Masaki H; Uozumi T Biosci Biotechnol Biochem; 1999 Nov; 63(11):1902-9. PubMed ID: 10635555 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]