These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The interaction of cell-penetrating peptides with lipid model systems and subsequent lipid reorganization: thermodynamic and structural characterization. Alves ID; Correia I; Jiao CY; Sachon E; Sagan S; Lavielle S; Tollin G; Chassaing G J Pept Sci; 2009 Mar; 15(3):200-9. PubMed ID: 18985709 [TBL] [Abstract][Full Text] [Related]
4. Interactions of amphipathic CPPs with model membranes. Deshayes S; Konate K; Aldrian G; Heitz F; Divita G Methods Mol Biol; 2011; 683():41-56. PubMed ID: 21053121 [TBL] [Abstract][Full Text] [Related]
5. Contributions of glycosaminoglycan binding and clustering to the biological uptake of the nonamphipathic cell-penetrating peptide WR9. Ziegler A; Seelig J Biochemistry; 2011 May; 50(21):4650-64. PubMed ID: 21491915 [TBL] [Abstract][Full Text] [Related]
6. Thermodynamic studies and binding mechanisms of cell-penetrating peptides with lipids and glycosaminoglycans. Ziegler A Adv Drug Deliv Rev; 2008 Mar; 60(4-5):580-97. PubMed ID: 18045730 [TBL] [Abstract][Full Text] [Related]
7. NMR studies of three-dimensional structure and positioning of CPPs in membrane model systems. Mäler L; Gräslund A Methods Mol Biol; 2011; 683():57-67. PubMed ID: 21053122 [TBL] [Abstract][Full Text] [Related]
10. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis. Ziegler A; Blatter XL; Seelig A; Seelig J Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253 [TBL] [Abstract][Full Text] [Related]
11. Binding of oligoarginine to membrane lipids and heparan sulfate: structural and thermodynamic characterization of a cell-penetrating peptide. Gonçalves E; Kitas E; Seelig J Biochemistry; 2005 Feb; 44(7):2692-702. PubMed ID: 15709783 [TBL] [Abstract][Full Text] [Related]
12. Penetration without cells: membrane translocation of cell-penetrating peptides in the model giant plasma membrane vesicles. Säälik P; Niinep A; Pae J; Hansen M; Lubenets D; Langel Ü; Pooga M J Control Release; 2011 Jul; 153(2):117-25. PubMed ID: 21420454 [TBL] [Abstract][Full Text] [Related]
13. Effects of tryptophan content and backbone spacing on the uptake efficiency of cell-penetrating peptides. Rydberg HA; Matson M; Amand HL; Esbjörner EK; Nordén B Biochemistry; 2012 Jul; 51(27):5531-9. PubMed ID: 22712882 [TBL] [Abstract][Full Text] [Related]
15. Distinct transduction modes of arginine-rich cell-penetrating peptides for cargo delivery into tumor cells. Ma DX; Shi NQ; Qi XR Int J Pharm; 2011 Oct; 419(1-2):200-8. PubMed ID: 21843610 [TBL] [Abstract][Full Text] [Related]
16. Acylation of octaarginine: Implication to the use of intracellular delivery vectors. Katayama S; Hirose H; Takayama K; Nakase I; Futaki S J Control Release; 2011 Jan; 149(1):29-35. PubMed ID: 20144669 [TBL] [Abstract][Full Text] [Related]
17. Inverted micelle formation of cell-penetrating peptide studied by coarse-grained simulation: importance of attractive force between cell-penetrating peptides and lipid head group. Kawamoto S; Takasu M; Miyakawa T; Morikawa R; Oda T; Futaki S; Nagao H J Chem Phys; 2011 Mar; 134(9):095103. PubMed ID: 21385001 [TBL] [Abstract][Full Text] [Related]
18. On the importance of electrostatic interactions between cell penetrating peptides and membranes: a pathway toward tumor cell selectivity? Jobin ML; Alves ID Biochimie; 2014 Dec; 107 Pt A():154-9. PubMed ID: 25107405 [TBL] [Abstract][Full Text] [Related]
19. Improved cellular uptake of antisense peptide nucleic acids by conjugation to a cell-penetrating peptide and a lipid domain. Shiraishi T; Nielsen PE Methods Mol Biol; 2011; 751():209-21. PubMed ID: 21674333 [TBL] [Abstract][Full Text] [Related]