BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 21053263)

  • 1. In Vitro characterization of low modulus linoleic acid coated strontium-substituted hydroxyapatite containing PMMA bone cement.
    Lam WM; Pan HB; Fong MK; Cheung WS; Wong KL; Li ZY; Luk KD; Chan WK; Wong CT; Yang C; Lu WW
    J Biomed Mater Res B Appl Biomater; 2011 Jan; 96(1):76-83. PubMed ID: 21053263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vertebroplasty by use of a strontium-containing bioactive bone cement.
    Cheung KM; Lu WW; Luk KD; Wong CT; Chan D; Shen JX; Qiu GX; Zheng ZM; Li CH; Liu SL; Chan WK; Leong JC
    Spine (Phila Pa 1976); 2005 Sep; 30(17 Suppl):S84-91. PubMed ID: 16138071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a new composite PMMA-HA/Brushite bone cement for spinal augmentation.
    Aghyarian S; Rodriguez LC; Chari J; Bentley E; Kosmopoulos V; Lieberman IH; Rodrigues DC
    J Biomater Appl; 2014 Nov; 29(5):688-98. PubMed ID: 25085810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMP-modified PMMA bone cement with adapted mechanical and hardening properties for the use in cancellous bone augmentation.
    Boger A; Wheeler K; Montali A; Gruskin E
    J Biomed Mater Res B Appl Biomater; 2009 Aug; 90(2):760-6. PubMed ID: 19280644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of injectable PMMA-strontium-substituted bioactive glass bone cement composites.
    Goñi I; Rodríguez R; García-Arnáez I; Parra J; Gurruchaga M
    J Biomed Mater Res B Appl Biomater; 2018 Apr; 106(3):1245-1257. PubMed ID: 28580716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced osteointegration of poly(methylmethacrylate) bone cements by incorporating strontium-containing borate bioactive glass.
    Cui X; Huang C; Zhang M; Ruan C; Peng S; Li L; Liu W; Wang T; Li B; Huang W; Rahaman MN; Lu WW; Pan H
    J R Soc Interface; 2017 Jun; 14(131):. PubMed ID: 28615491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of vertebral cancellous bone augmented with compliant PMMA under dynamic loads.
    Boger A; Bohner M; Heini P; Schwieger K; Schneider E
    Acta Biomater; 2008 Nov; 4(6):1688-93. PubMed ID: 18678533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative radiopacifiers for polymethyl methacrylate bone cements: Silane-treated anatase titanium dioxide and yttria-stabilised zirconium dioxide.
    Ayre WN; Scully N; Elford C; Evans BA; Rowe W; Rowlands J; Mitha R; Malpas P; Manti P; Holt C; Morgan-Jones R; Birchall JC; Denyer SP; Evans SL
    J Biomater Appl; 2021 May; 35(10):1235-1252. PubMed ID: 33573445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variation of the mechanical properties of PMMA to suit osteoporotic cancellous bone.
    Boger A; Bisig A; Bohner M; Heini P; Schneider E
    J Biomater Sci Polym Ed; 2008; 19(9):1125-42. PubMed ID: 18727856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preclinical Evaluation of Bioactive Small Intestinal Submucosa-PMMA Bone Cement for Vertebral Augmentation.
    Zhang C; Cai X; Li M; Peng J; Mei J; Wang F; Zhang R; Zhou Y; Fang S; Xia D; Zhao J
    ACS Biomater Sci Eng; 2024 Apr; 10(4):2398-2413. PubMed ID: 38477550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the particle release of porous PMMA cements during curing.
    Beck S; Boger A
    Acta Biomater; 2009 Sep; 5(7):2503-7. PubMed ID: 19409868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of oligo(trimethylene carbonate) addition on the stiffness of acrylic bone cement.
    Persson C; López A; Fathali H; Hoess A; Rojas R; Ott MK; Hilborn J; Engqvist H
    Biomatter; 2016; 6(1):e1133394. PubMed ID: 26727581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Nano-HA Coated Bone Collagen to Acrylic (Polymethylmethacrylate) Bone Cement on Mechanical Properties and Bioactivity.
    Li T; Weng X; Bian Y; Zhou L; Cui F; Qiu Z
    PLoS One; 2015; 10(6):e0129018. PubMed ID: 26039750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo response to a low-modulus PMMA bone cement in an ovine model.
    Robo C; Hulsart-Billström G; Nilsson M; Persson C
    Acta Biomater; 2018 May; 72():362-370. PubMed ID: 29559365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The characteristics of a hydroxyapatite-chitosan-PMMA bone cement.
    Kim SB; Kim YJ; Yoon TL; Park SA; Cho IH; Kim EJ; Kim IA; Shin JW
    Biomaterials; 2004 Nov; 25(26):5715-23. PubMed ID: 15147817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of PMMA vertebroplasty cement for reduced stiffness by addition of normal saline: a material properties evaluation.
    Schröder C; Nguyen M; Kraxenberger M; Chevalier Y; Melcher C; Wegener B; Birkenmaier C
    Eur Spine J; 2017 Dec; 26(12):3209-3215. PubMed ID: 27942939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term mechanical properties of a novel low-modulus bone cement for the treatment of osteoporotic vertebral compression fractures.
    Robo C; Öhman-Mägi C; Persson C
    J Mech Behav Biomed Mater; 2021 Jun; 118():104437. PubMed ID: 33706086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-modulus PMMA bone cement modified with castor oil.
    López A; Hoess A; Thersleff T; Ott M; Engqvist H; Persson C
    Biomed Mater Eng; 2011; 21(5-6):323-32. PubMed ID: 22561251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone Response to Porous Poly(methyl methacrylate) Cement Loaded with Hydroxyapatite Particles in a Rabbit Mandibular Model.
    Sa Y; Yu N; Wolke JGC; Chanchareonsook N; Goh BT; Wang Y; Yang F; Jansen JA
    Tissue Eng Part C Methods; 2017 May; 23(5):262-273. PubMed ID: 28372521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of hydroxyapatite on PMMA-HAp cement for biomedical applications.
    Montaño CJ; Campos TPR; Lemos BRS; Yoshida MI; Almeida NGS; Aguilar MTP; Lima CV
    Biomed Mater Eng; 2020; 31(3):191-201. PubMed ID: 32568169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.