BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 21053954)

  • 1. Environmental impacts of remediation of a trichloroethene-contaminated site: life cycle assessment of remediation alternatives.
    Lemming G; Hauschild MZ; Chambon J; Binning PJ; Bulle C; Margni M; Bjerg PL
    Environ Sci Technol; 2010 Dec; 44(23):9163-9. PubMed ID: 21053954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is there an environmental benefit from remediation of a contaminated site? Combined assessments of the risk reduction and life cycle impact of remediation.
    Lemming G; Chambon JC; Binning PJ; Bjerg PL
    J Environ Manage; 2012 Dec; 112():392-403. PubMed ID: 22985675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Risk-based economic decision analysis of remediation options at a PCE-contaminated site.
    Lemming G; Friis-Hansen P; Bjerg PL
    J Environ Manage; 2010 May; 91(5):1169-82. PubMed ID: 20117877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A perspective on LCA application in site remediation services: critical review of challenges.
    Morais SA; Delerue-Matos C
    J Hazard Mater; 2010 Mar; 175(1-3):12-22. PubMed ID: 19910112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Health risk assessment on residents exposed to chlorinated hydrocarbons contaminated in groundwater of a hazardous waste site.
    Lee LJ; Chan CC; Chung CW; Ma YC; Wang GS; Wang JD
    J Toxicol Environ Health A; 2002 Feb; 65(3-4):219-35. PubMed ID: 11911487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of metal contamination using X-ray fluorescence spectrometry and the toxicity characteristic leaching procedure (TCLP) during remediation of a waste disposal site in Antarctica.
    Stark SC; Snape I; Graham NJ; Brennan JC; Gore DB
    J Environ Monit; 2008 Jan; 10(1):60-70. PubMed ID: 18175018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Follow-up study on the effects on well chemistry from biological and chemical remediation of chlorinated solvents.
    Scott D; Apblett A; Materer NF
    J Environ Monit; 2011 Sep; 13(9):2521-6. PubMed ID: 21769369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioremediation of trichloroethylene contaminated groundwater using anaerobic process.
    Chomsurin C; Kajorntraidej J; Luangmuang K
    Water Sci Technol; 2008; 58(11):2127-32. PubMed ID: 19092188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methodology for setting risk-based concentrations of contaminants in soil and groundwater and application to a model contaminated site.
    Fujinaga A; Uchiyama I; Morisawa S; Yoneda M; Sasamoto Y
    Risk Anal; 2012 Jan; 32(1):122-37. PubMed ID: 21978276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Occurrence and treatment of arsenic in groundwater and soil in northern Mexico and southwestern USA.
    Camacho LM; Gutiérrez M; Alarcón-Herrera MT; Villalba Mde L; Deng S
    Chemosphere; 2011 Apr; 83(3):211-25. PubMed ID: 21216433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring trichloroethene remediation at an iron permeable reactive barrier using stable carbon isotopic analysis.
    VanStone N; Przepiora A; Vogan J; Lacrampe-Couloume G; Powers B; Perez E; Mabury S; Sherwood Lollar B
    J Contam Hydrol; 2005 Aug; 78(4):313-25. PubMed ID: 16026893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mercury speciation analyses in HgCl(2)-contaminated soils and groundwater--implications for risk assessment and remediation strategies.
    Bollen A; Wenke A; Biester H
    Water Res; 2008 Jan; 42(1-2):91-100. PubMed ID: 17675134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-scale evaluation of remediation technologies for a contaminated site by applying economic input-output life cycle assessment: risk-cost, risk-energy consumption and risk-CO2 emission.
    Inoue Y; Katayama A
    J Hazard Mater; 2011 Sep; 192(3):1234-42. PubMed ID: 21741766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Life cycle assessment of disposal of residues from municipal solid waste incineration: recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES model.
    Birgisdóttir H; Bhander G; Hauschild MZ; Christensen TH
    Waste Manag; 2007; 27(8):S75-84. PubMed ID: 17416511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Source-zone characterization of a chlorinated-solvent contaminated Superfund site in Tucson, AZ.
    Brusseau ML; Nelson NT; Zhang Z; Blue JE; Rohrer J; Allen T
    J Contam Hydrol; 2007 Feb; 90(1-2):21-40. PubMed ID: 17049404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life cycle based risk assessment of recycled materials in roadway construction.
    Carpenter AC; Gardner KH; Fopiano J; Benson CH; Edil TB
    Waste Manag; 2007; 27(10):1458-64. PubMed ID: 17499986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer.
    Bennett P; He F; Zhao D; Aiken B; Feldman L
    J Contam Hydrol; 2010 Jul; 116(1-4):35-46. PubMed ID: 20542350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remediation of PCB contaminated soils in the Canadian Arctic: excavation and surface PRB technology.
    Kalinovich I; Rutter A; Poland JS; Cairns G; Rowe RK
    Sci Total Environ; 2008 Dec; 407(1):53-66. PubMed ID: 18838153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using radon-222 as indicator for the evaluation of the efficiency of groundwater remediation by in situ air sparging.
    Schubert M; Schmidt A; Müller K; Weiss H
    J Environ Radioact; 2011 Feb; 102(2):193-9. PubMed ID: 21146260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review of reactive kinetic models describing reductive dechlorination of chlorinated ethenes in soil and groundwater.
    Chambon JC; Bjerg PL; Scheutz C; Baelum J; Jakobsen R; Binning PJ
    Biotechnol Bioeng; 2013 Jan; 110(1):1-23. PubMed ID: 22926627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.