These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 21053957)
1. Effects of humic acid and sunlight on the generation and aggregation state of aqu/C60 nanoparticles. Isaacson CW; Bouchard DC Environ Sci Technol; 2010 Dec; 44(23):8971-6. PubMed ID: 21053957 [TBL] [Abstract][Full Text] [Related]
2. Asymmetric flow field flow fractionation of aqueous C60 nanoparticles with size determination by dynamic light scattering and quantification by liquid chromatography atmospheric pressure photo-ionization mass spectrometry. Isaacson CW; Bouchard D J Chromatogr A; 2010 Feb; 1217(9):1506-12. PubMed ID: 20070969 [TBL] [Abstract][Full Text] [Related]
3. Generation and properties of aqu/nC Li X; Ding G; Zhang J; Wang Y; Li W; Wang C; Li R; Yang Z Environ Sci Pollut Res Int; 2020 Apr; 27(11):12527-12538. PubMed ID: 32002835 [TBL] [Abstract][Full Text] [Related]
4. Colloidal properties of aqueous fullerenes: isoelectric points and aggregation kinetics of C60 and C60 derivatives. Bouchard D; Ma X; Isaacson C Environ Sci Technol; 2009 Sep; 43(17):6597-603. PubMed ID: 19764223 [TBL] [Abstract][Full Text] [Related]
5. Changes in agglomeration of fullerenes during ingestion and excretion in Thamnocephalus platyurus. Patra M; Ma X; Isaacson C; Bouchard D; Poynton H; Lazorchak JM; Rogers KR Environ Toxicol Chem; 2011 Apr; 30(4):828-35. PubMed ID: 21309021 [TBL] [Abstract][Full Text] [Related]
6. Effects of humic and fulvic acids on aggregation of aqu/nC60 nanoparticles. Zhang W; Rattanaudompol US; Li H; Bouchard D Water Res; 2013 Apr; 47(5):1793-802. PubMed ID: 23374256 [TBL] [Abstract][Full Text] [Related]
7. Temporal changes in Aqu/C60 physical-chemical, deposition, and transport characteristics in aqueous systems. Isaacson C; Zhang W; Powell T; Ma X; Bouchard D Environ Sci Technol; 2011 Jun; 45(12):5170-7. PubMed ID: 21574655 [TBL] [Abstract][Full Text] [Related]
8. Fullerene nanoparticles exhibit greater retention in freshwater sediment than in model porous media. Zhang W; Isaacson CW; Rattanaudompol US; Powell TB; Bouchard D Water Res; 2012 Jun; 46(9):2992-3004. PubMed ID: 22445188 [TBL] [Abstract][Full Text] [Related]
9. Aggregation behavior of aqu/nC Li X; Ding G; Song G; Zhuang Y; Wang C; Li R; Liu Q Ecotoxicol Environ Saf; 2020 Apr; 193():110332. PubMed ID: 32088550 [TBL] [Abstract][Full Text] [Related]
10. Effect of preparation methods on toxicity of fullerene water suspensions to Japanese medaka embryos. Kim KT; Jang MH; Kim JY; Kim SD Sci Total Environ; 2010 Oct; 408(22):5606-12. PubMed ID: 20723969 [TBL] [Abstract][Full Text] [Related]
11. Impact of sunlight and humic acid on the deposition kinetics of aqueous fullerene nanoparticles (nC60). Qu X; Alvarez PJ; Li Q Environ Sci Technol; 2012 Dec; 46(24):13455-62. PubMed ID: 23157776 [TBL] [Abstract][Full Text] [Related]
12. UV irradiation and humic acid mediate aggregation of aqueous fullerene (nC₆₀) nanoparticles. Qu X; Hwang YS; Alvarez PJ; Bouchard D; Li Q Environ Sci Technol; 2010 Oct; 44(20):7821-6. PubMed ID: 20866048 [TBL] [Abstract][Full Text] [Related]
13. Natural organic matter and sunlight accelerate the degradation of 17ss-estradiol in water. Leech DM; Snyder MT; Wetzel RG Sci Total Environ; 2009 Mar; 407(6):2087-92. PubMed ID: 19118869 [TBL] [Abstract][Full Text] [Related]
14. Enhanced mobility of fullerene (C60) nanoparticles in the presence of stabilizing agents. Wang Y; Li Y; Costanza J; Abriola LM; Pennell KD Environ Sci Technol; 2012 Nov; 46(21):11761-9. PubMed ID: 22973990 [TBL] [Abstract][Full Text] [Related]
15. C60 colloid formation in aqueous systems: effects of preparation method on size, structure, and surface charge. Duncan LK; Jinschek JR; Vikesland PJ Environ Sci Technol; 2008 Jan; 42(1):173-8. PubMed ID: 18350893 [TBL] [Abstract][Full Text] [Related]
16. The dispersion, stability, and resuspension of C Ding G; Li X; Zhang J; Zhang N; Li R; Wang Y; Yang Z; Peijnenburg WJGM Environ Sci Pollut Res Int; 2019 Sep; 26(25):25538-25549. PubMed ID: 31267391 [TBL] [Abstract][Full Text] [Related]
17. Size fractionation and characterization of natural aquatic colloids and nanoparticles. Baalousha M; Lead JR Sci Total Environ; 2007 Nov; 386(1-3):93-102. PubMed ID: 17644161 [TBL] [Abstract][Full Text] [Related]
18. Inhalation toxicity and lung toxicokinetics of C60 fullerene nanoparticles and microparticles. Baker GL; Gupta A; Clark ML; Valenzuela BR; Staska LM; Harbo SJ; Pierce JT; Dill JA Toxicol Sci; 2008 Jan; 101(1):122-31. PubMed ID: 17878152 [TBL] [Abstract][Full Text] [Related]
19. Characterization of sewage plant hydrocolloids using asymmetrical flow field-flow fractionation and ICP-mass spectrometry. Prestel H; Schott L; Niessner R; Panne U Water Res; 2005 Sep; 39(15):3541-52. PubMed ID: 16095663 [TBL] [Abstract][Full Text] [Related]
20. The effect of humic acids on the cytotoxicity of silver nanoparticles to a natural aquatic bacterial assemblage. Dasari TP; Hwang HM Sci Total Environ; 2010 Nov; 408(23):5817-23. PubMed ID: 20850168 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]