These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 21054030)
21. Monte Carlo simulations of critical cluster sizes and nucleation rates of water. Merikanto J; Vehkamaki H; Zapadinsky E J Chem Phys; 2004 Jul; 121(2):914-24. PubMed ID: 15260623 [TBL] [Abstract][Full Text] [Related]
22. Co-condensation of nonane and D2O in a supersonic nozzle. Pathak H; Wölk J; Strey R; Wyslouzil BE J Chem Phys; 2014 Jan; 140(3):034304. PubMed ID: 25669376 [TBL] [Abstract][Full Text] [Related]
23. Simulating the nucleation of water/ethanol and water/n-nonane mixtures: mutual enhancement and two-pathway mechanism. Chen B; Siepmann JI; Klein ML J Am Chem Soc; 2003 Mar; 125(10):3113-8. PubMed ID: 12617679 [TBL] [Abstract][Full Text] [Related]
24. Simulation of homogeneous condensation of small polyatomic systems in high pressure supersonic nozzle flows using Bhatnagar-Gross-Krook model. Kumar R; Levin DA J Chem Phys; 2011 Mar; 134(12):124519. PubMed ID: 21456688 [TBL] [Abstract][Full Text] [Related]
25. Monomer, clusters, liquid: an integrated spectroscopic study of methanol condensation. Laksmono H; Tanimura S; Allen HC; Wilemski G; Zahniser MS; Shorter JH; Nelson DD; McManus JB; Wyslouzil BE Phys Chem Chem Phys; 2011 Apr; 13(13):5855-71. PubMed ID: 21331433 [TBL] [Abstract][Full Text] [Related]
26. Heterogeneity in binary mixtures of (water + tertiary butanol): temperature dependence across mixture composition. Gazi HA; Biswas R J Phys Chem A; 2011 Mar; 115(12):2447-55. PubMed ID: 21370853 [TBL] [Abstract][Full Text] [Related]
27. Experimental study of the rate of OH + HO2 --> H2O + O2 at high temperatures using the reverse reaction. Hong Z; Vasu SS; Davidson DF; Hanson RK J Phys Chem A; 2010 May; 114(17):5520-5. PubMed ID: 20392098 [TBL] [Abstract][Full Text] [Related]
28. Homogeneous nucleation of carbon dioxide in supersonic nozzles I: experiments and classical theories. Dingilian KK; Halonen R; Tikkanen V; Reischl B; Vehkamäki H; Wyslouzil BE Phys Chem Chem Phys; 2020 Sep; 22(34):19282-19298. PubMed ID: 32815933 [TBL] [Abstract][Full Text] [Related]
29. Homogeneous nucleation rate measurements in supersaturated water vapor II. Brus D; Zdímal V; Uchtmann H J Chem Phys; 2009 Aug; 131(7):074507. PubMed ID: 19708751 [TBL] [Abstract][Full Text] [Related]
30. Crossed-beam intermodulated fluorescence spectroscopy as a spatially resolved temperature diagnostic for supersonic nozzles. Phillips GT; Perram GP Appl Opt; 2009 Sep; 48(26):4917-21. PubMed ID: 19745854 [TBL] [Abstract][Full Text] [Related]
31. Nucleation probability in binary heterogeneous nucleation of water-n-propanol vapor mixtures on insoluble and soluble nanoparticles. Wagner PE; Kaller D; Vrtala A; Lauri A; Kulmala M; Laaksonen A Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 1):021605. PubMed ID: 12636690 [TBL] [Abstract][Full Text] [Related]
32. Pulsed Laval nozzle study of the kinetics of OH with unsaturated hydrocarbons at very low temperatures. Taylor SE; Goddard A; Blitz MA; Cleary PA; Heard DE Phys Chem Chem Phys; 2008 Jan; 10(3):422-37. PubMed ID: 18174984 [TBL] [Abstract][Full Text] [Related]
33. Temperature and gas-phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy: the effect of condensation on the boundary-layer thickness. Tanimura S; Zvinevich Y; Wyslouzil BE; Zahniser M; Shorter J; Nelson D; McManus B J Chem Phys; 2005 May; 122(19):194304. PubMed ID: 16161570 [TBL] [Abstract][Full Text] [Related]
34. Homogeneous nucleation and droplet growth in supersaturated argon vapor: the cryogenic nucleation pulse chamber. Fladerer A; Strey R J Chem Phys; 2006 Apr; 124(16):164710. PubMed ID: 16674160 [TBL] [Abstract][Full Text] [Related]
35. Thermal properties and mixing state of diol-water mixtures studied by calorimetry, large-angle X-ray scattering, and NMR relaxation. Takamuku T; Tsutsumi Y; Matsugami M; Yamaguchi T J Phys Chem B; 2008 Oct; 112(42):13300-9. PubMed ID: 18826183 [TBL] [Abstract][Full Text] [Related]
36. The effects of methanol clustering on methanol-water nucleation. Sun T; Wilemski G; Hale BN; Wyslouzil BE J Chem Phys; 2022 Nov; 157(18):184301. PubMed ID: 36379791 [TBL] [Abstract][Full Text] [Related]
37. Comment on "The nucleation behavior of supercooled water vapor in helium" [J. Chem. Phys. 117, 5647 (2002)]. Labetski DG; Holten V; Van Dongen ME J Chem Phys; 2004 Apr; 120(13):6314. PubMed ID: 15267520 [TBL] [Abstract][Full Text] [Related]
38. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
39. Homogeneous water nucleation in a laminar flow diffusion chamber. Manka AA; Brus D; Hyvärinen AP; Lihavainen H; Wölk J; Strey R J Chem Phys; 2010 Jun; 132(24):244505. PubMed ID: 20590204 [TBL] [Abstract][Full Text] [Related]
40. Isothermal Nucleation Rates of n-Propanol, n-Butanol, and n-Pentanol in Supersonic Nozzles: Critical Cluster Sizes and the Role of Coagulation. Mullick K; Bhabhe A; Manka A; Wölk J; Strey R; Wyslouzil BE J Phys Chem B; 2015 Jul; 119(29):9009-19. PubMed ID: 25361235 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]