These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 21054074)

  • 21. Multiphoton laser scanning microscopy--a novel diagnostic method for superficial skin cancers.
    Paoli J; Smedh M; Ericson MB
    Semin Cutan Med Surg; 2009 Sep; 28(3):190-5. PubMed ID: 19782943
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly versatile confocal microscopy system based on a tunable femtosecond Er:fiber source.
    Träutlein D; Adler F; Moutzouris K; Jeromin A; Leitenstorfer A; Ferrando-May E
    J Biophotonics; 2008 Mar; 1(1):53-61. PubMed ID: 19343635
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Nonlinear Microscopy in Ophthalmology: Principles and Pathbreaking Applications].
    Ehmke T; Krüger A; Ripken T; Reiß S; Stachs O; Heisterkamp A
    Klin Monbl Augenheilkd; 2015 Dec; 232(12):1365-73. PubMed ID: 26678898
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Laboratory Studies of Nonlinear Optical Signals for Caries Detection.
    Terrer E; Panayotov IV; Slimani A; Tardivo D; Gillet D; Levallois B; Fejerskov O; Gergely C; Cuisinier FJ; Tassery H; Cloitre T
    J Dent Res; 2016 May; 95(5):574-9. PubMed ID: 26826107
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving the penetration depth in multiphoton excitation laser scanning microscopy.
    McConnell G
    J Biomed Opt; 2006; 11(5):054020. PubMed ID: 17092169
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extension of imaging depth in two-photon fluorescence microscopy using a long-wavelength high-pulse-energy femtosecond laser source.
    Wang C; Qiao L; He F; Cheng Y; Xu Z
    J Microsc; 2011 Aug; 243(2):179-83. PubMed ID: 21388374
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antecedents of two-photon excitation laser scanning microscopy.
    Masters BR; So PT
    Microsc Res Tech; 2004 Jan; 63(1):3-11. PubMed ID: 14677127
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vivo carotid artery closure by laser activation of hyaluronan-embedded gold nanorods.
    Matteini P; Ratto F; Rossi F; Rossi G; Esposito G; Puca A; Albanese A; Maira G; Pini R
    J Biomed Opt; 2010; 15(4):041508. PubMed ID: 20799786
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancement of Nonlinear Optical Scattering by Gold Nanoparticles through Aggregation-Induced Plasmon Coupling in the Near-Infrared.
    de Coene Y; Deschaume O; Zhang Y; Billen A; He J; Seré S; Knoppe S; Van Cleuvenbergen S; Verbiest T; Clays K; Ye J; Bartic C
    Chemphyschem; 2019 Jul; 20(13):1765-1774. PubMed ID: 31020783
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods.
    Huang YF; Sefah K; Bamrungsap S; Chang HT; Tan W
    Langmuir; 2008 Oct; 24(20):11860-5. PubMed ID: 18817428
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Silica coated gold nanorods for imaging and photo-thermal therapy of cancer cells.
    Mallick S; Sun IC; Kim K; Yil DK
    J Nanosci Nanotechnol; 2013 May; 13(5):3223-9. PubMed ID: 23858834
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro imaging of embryonic stem cells using multiphoton luminescence of gold nanoparticles.
    Nagesha D; Laevsky GS; Lampton P; Banyal R; Warner C; DiMarzio C; Sridhar S
    Int J Nanomedicine; 2007; 2(4):813-9. PubMed ID: 18203448
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gold nanorods for fluorescence lifetime imaging in biology.
    Zhang Y; Yu J; Birch DJ; Chen Y
    J Biomed Opt; 2010; 15(2):020504. PubMed ID: 20459218
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication of gold nanorods-doped, bovine serum albumin microstructures via multiphoton excited photochemistry.
    Lien CH; Kuo WS; Cho KC; Lin CY; Su YD; Huang LL; Campagnola PJ; Dong CY; Chen SJ
    Opt Express; 2011 Mar; 19(7):6260-8. PubMed ID: 21451651
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multifunctional imaging of endogenous contrast by simultaneous nonlinear and optical coherence microscopy of thick tissues.
    Yazdanfar S; Chen YY; So PT; Laiho LH
    Microsc Res Tech; 2007 Jul; 70(7):628-33. PubMed ID: 17323366
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Transcanalicular microendoscopic laser DCR: technique and results].
    Emmerich KH; Ungerechts R; Meyer-Rüsenberg HW
    Klin Monbl Augenheilkd; 2012 Jan; 229(1):39-41. PubMed ID: 22241541
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Towards endoscopic ultrafast laser microsurgery of vocal folds.
    Hoy CL; Everett WN; Yildirim M; Kobler J; Zeitels SM; Ben-Yakar A
    J Biomed Opt; 2012 Mar; 17(3):038002. PubMed ID: 22502583
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visualizing laser-skin interaction in vivo by multiphoton microscopy.
    Tsai TH; Jee SH; Chan JY; Lee JN; Lee WR; Dong CY; Lin SJ
    J Biomed Opt; 2009; 14(2):024034. PubMed ID: 19405763
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transoral laser microsurgery for early laryngeal cancer.
    Grant DG; Repanos C; Malpas G; Salassa JR; Hinni ML
    Expert Rev Anticancer Ther; 2010 Mar; 10(3):331-8. PubMed ID: 20214514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterizing phase-separated microstructure of polymeric blended membrane using combined multiphoton and reflected confocal imaging.
    Tan HY; Lin MG; Hsiao WC; Lin SJ; Wen LK; Chen WL; Dong CY; Young TH
    Opt Express; 2008 Mar; 16(6):3818-27. PubMed ID: 18542477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.