BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 21054099)

  • 1. Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study.
    Wang RK; Nuttall AL
    J Biomed Opt; 2010; 15(5):056005. PubMed ID: 21054099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo imaging and low-coherence interferometry of organ of Corti vibration.
    Chen F; Choudhury N; Zheng J; Matthews S; Nutall AL; Jacques SL
    J Biomed Opt; 2007; 12(2):021006. PubMed ID: 17477713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical Coherence Tomography to Measure Sound-Induced Motions Within the Mouse Organ of Corti In Vivo.
    Jawadi Z; Applegate BE; Oghalai JS
    Methods Mol Biol; 2016; 1427():449-62. PubMed ID: 27259941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low coherence interferometry of the cochlear partition.
    Choudhury N; Song G; Chen F; Matthews S; Tschinkel T; Zheng J; Jacques SL; Nuttall AL
    Hear Res; 2006 Oct; 220(1-2):1-9. PubMed ID: 16945496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid confocal imaging for measuring sound-induced motion of the hearing organ in the apical region.
    Jacob S; Tomo I; Fridberger A; de Monvel JB; Ulfendahl M
    J Biomed Opt; 2007; 12(2):021005. PubMed ID: 17477712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Depth-resolved dual-beamlet vibrometry based on Fourier domain low coherence interferometry.
    Subhash HM; Choudhury N; Chen F; Wang RK; Jacques SL; Nuttall AL
    J Biomed Opt; 2013 Mar; 18(3):036003. PubMed ID: 23455961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring hearing organ vibration patterns with confocal microscopy and optical flow.
    Fridberger A; Widengren J; Boutet de Monvel J
    Biophys J; 2004 Jan; 86(1 Pt 1):535-43. PubMed ID: 14695298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo micromechanical measurements of the organ of Corti in the basal cochlear turn.
    Nuttall AL; Ren T; de Boer E; Zheng J; Parthasarathi A; Grosh K; Guo M; Dolan D
    Audiol Neurootol; 2002; 7(1):21-6. PubMed ID: 11914521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organ of Corti vibration within the intact gerbil cochlea measured by volumetric optical coherence tomography and vibrometry.
    Dong W; Xia A; Raphael PD; Puria S; Applegate B; Oghalai JS
    J Neurophysiol; 2018 Dec; 120(6):2847-2857. PubMed ID: 30281386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimal basilar membrane motion in low-frequency hearing.
    Warren RL; Ramamoorthy S; Ciganović N; Zhang Y; Wilson TM; Petrie T; Wang RK; Jacques SL; Reichenbach T; Nuttall AL; Fridberger A
    Proc Natl Acad Sci U S A; 2016 Jul; 113(30):E4304-10. PubMed ID: 27407145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro-optical coherence tomography of the mammalian cochlea.
    Iyer JS; Batts SA; Chu KK; Sahin MI; Leung HM; Tearney GJ; Stankovic KM
    Sci Rep; 2016 Sep; 6():33288. PubMed ID: 27633610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibration of the organ of Corti within the cochlear apex in mice.
    Gao SS; Wang R; Raphael PD; Moayedi Y; Groves AK; Zuo J; Applegate BE; Oghalai JS
    J Neurophysiol; 2014 Sep; 112(5):1192-204. PubMed ID: 24920025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional motion of the organ of Corti.
    Hemmert W; Zenner HP; Gummer AW
    Biophys J; 2000 May; 78(5):2285-97. PubMed ID: 10777727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Static length changes of cochlear outer hair cells can tune low-frequency hearing.
    Ciganović N; Warren RL; Keçeli B; Jacob S; Fridberger A; Reichenbach T
    PLoS Comput Biol; 2018 Jan; 14(1):e1005936. PubMed ID: 29351276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brightness-compensated 3-D optical flow algorithm for monitoring cochlear motion patterns.
    von Tiedemann M; Fridberger A; Ulfendahl M; de Monvel JB
    J Biomed Opt; 2010; 15(5):056012. PubMed ID: 21054106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cochlear outer hair cell electromotility enhances organ of Corti motion on a cycle-by-cycle basis at high frequencies in vivo.
    Dewey JB; Altoè A; Shera CA; Applegate BE; Oghalai JS
    Proc Natl Acad Sci U S A; 2021 Oct; 118(43):. PubMed ID: 34686590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subnanometer optical coherence tomographic vibrography.
    Chang EW; Kobler JB; Yun SH
    Opt Lett; 2012 Sep; 37(17):3678-80. PubMed ID: 22940988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Persistence of past stimulations: storing sounds within the inner ear.
    Zheng J; Ramamoorthy S; Ren T; He W; Zha D; Chen F; Magnusson A; Nuttall AL; Fridberger A
    Biophys J; 2011 Apr; 100(7):1627-34. PubMed ID: 21463575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging high-frequency periodic motion in the mouse ear with coherently interleaved optical coherence tomography.
    Applegate BE; Shelton RL; Gao SS; Oghalai JS
    Opt Lett; 2011 Dec; 36(23):4716-8. PubMed ID: 22139294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo outer hair cell length changes expose the active process in the cochlea.
    Zha D; Chen F; Ramamoorthy S; Fridberger A; Choudhury N; Jacques SL; Wang RK; Nuttall AL
    PLoS One; 2012; 7(4):e32757. PubMed ID: 22496736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.