BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 21054105)

  • 1. Comparison of phase-shifting techniques for in vivo full-range, high-speed Fourier-domain optical coherence tomography.
    Kim DY; Werner JS; Zawadzki RJ
    J Biomed Opt; 2010; 15(5):056011. PubMed ID: 21054105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex conjugate artifact-free adaptive optics optical coherence tomography of in vivo human optic nerve head.
    Kim DY; Werner JS; Zawadzki RJ
    J Biomed Opt; 2012 Dec; 17(12):126005. PubMed ID: 23208216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit.
    Watanabe Y; Itagaki T
    J Biomed Opt; 2009; 14(6):060506. PubMed ID: 20059237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography.
    Sarunic MV; Applegate BE; Izatt JA
    Opt Lett; 2006 Aug; 31(16):2426-8. PubMed ID: 16880844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second.
    Potsaid B; Gorczynska I; Srinivasan VJ; Chen Y; Jiang J; Cable A; Fujimoto JG
    Opt Express; 2008 Sep; 16(19):15149-69. PubMed ID: 18795054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dispersion encoded full range frequency domain optical coherence tomography.
    Hofer B; Povazay B; Hermann B; Unterhuber A; Matz G; Drexler W
    Opt Express; 2009 Jan; 17(1):7-24. PubMed ID: 19129868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography.
    Povazay B; Hofer B; Torti C; Hermann B; Tumlinson AR; Esmaeelpour M; Egan CA; Bird AC; Drexler W
    Opt Express; 2009 Mar; 17(5):4134-50. PubMed ID: 19259251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-step method for fiber-optic probe-based full-range spectral domain optical coherence tomography.
    Min EJ; Shin JG; Lee JH; Yasuno Y; Lee BH
    Appl Opt; 2013 Jul; 52(21):5143-51. PubMed ID: 23872759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
    Wojtkowski M; Srinivasan V; Fujimoto JG; Ko T; Schuman JS; Kowalczyk A; Duker JS
    Ophthalmology; 2005 Oct; 112(10):1734-46. PubMed ID: 16140383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit.
    Van der Jeught S; Bradu A; Podoleanu AG
    J Biomed Opt; 2010; 15(3):030511. PubMed ID: 20614994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral phase based k-domain interpolation for uniform sampling in swept-source optical coherence tomography.
    Wu T; Ding Z; Wang L; Chen M
    Opt Express; 2011 Sep; 19(19):18430-9. PubMed ID: 21935211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system.
    Zhang K; Kang JU
    Opt Express; 2010 May; 18(11):11772-84. PubMed ID: 20589038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography.
    Yasuno Y; Makita S; Endo T; Aoki G; Itoh M; Yatagai T
    Appl Opt; 2006 Mar; 45(8):1861-5. PubMed ID: 16572705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angular high-speed massively parallel detection spectral-domain optical coherence tomography for speckle reduction.
    Watanabe Y; Hasegawa H; Maeno S
    J Biomed Opt; 2011 Jun; 16(6):060504. PubMed ID: 21721798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array.
    Ustun TE; Iftimia NV; Ferguson RD; Hammer DX
    Rev Sci Instrum; 2008 Nov; 79(11):114301. PubMed ID: 19045902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional imaging of macular holes with high-speed optical coherence tomography.
    Hangai M; Ojima Y; Gotoh N; Inoue R; Yasuno Y; Makita S; Yamanari M; Yatagai T; Kita M; Yoshimura N
    Ophthalmology; 2007 Apr; 114(4):763-73. PubMed ID: 17187861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinal optical coherence tomography image enhancement via shrinkage denoising using double-density dual-tree complex wavelet transform.
    Chitchian S; Mayer MA; Boretsky AR; van Kuijk FJ; Motamedi M
    J Biomed Opt; 2012 Nov; 17(11):116009. PubMed ID: 23117804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy-guided learning approach to compressive FD-OCT.
    Schwartz S; Liu C; Wong A; Clausi DA; Fieguth P; Bizheva K
    Opt Express; 2013 Jan; 21(1):329-44. PubMed ID: 23388927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases.
    Sakamoto A; Hangai M; Yoshimura N
    Ophthalmology; 2008 Jun; 115(6):1071-1078.e7. PubMed ID: 18061270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance and scalability of Fourier domain optical coherence tomography acceleration using graphics processing units.
    Li J; Bloch P; Xu J; Sarunic MV; Shannon L
    Appl Opt; 2011 May; 50(13):1832-8. PubMed ID: 21532660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.