These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 21054121)

  • 1. Spectroscopic method for determination of the absorption coefficient in brain tissue.
    Johansson JD
    J Biomed Opt; 2010; 15(5):057005. PubMed ID: 21054121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues.
    Nagarajan VK; Yu B
    Lasers Surg Med; 2016 Sep; 48(7):686-94. PubMed ID: 27250022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum.
    Liu Q; Zhu C; Ramanujam N
    J Biomed Opt; 2003 Apr; 8(2):223-36. PubMed ID: 12683848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms.
    Palmer GM; Ramanujam N
    Appl Opt; 2006 Feb; 45(5):1062-71. PubMed ID: 16512550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the sensitivity to scattering coefficient of the epithelium in a two-layered tissue model by oblique optical fibers: Monte Carlo study.
    Sung KB; Chen HH
    J Biomed Opt; 2012 Oct; 17(10):107003. PubMed ID: 23047254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A strategy for quantitative spectral imaging of tissue absorption and scattering using light emitting diodes and photodiodes.
    Lo JY; Yu B; Fu HL; Bender JE; Palmer GM; Kuech TF; Ramanujam N
    Opt Express; 2009 Feb; 17(3):1372-84. PubMed ID: 19188966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Cerebral Hemodynamics and Tissue Morphology of In Vivo Rat Brain Using Spectral Diffuse Reflectance Imaging.
    Nishidate I; Ishizuka T; Mustari A; Yoshida K; Kawauchi S; Sato S; Sato M
    Appl Spectrosc; 2017 May; 71(5):866-878. PubMed ID: 27381353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue.
    Alhamami M; Kolios MC; Tavakkoli J
    Med Phys; 2014 May; 41(5):053502. PubMed ID: 24784408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarization influence on reflectance measurements in the spatial frequency domain.
    Wiest J; Bodenschatz N; Brandes A; Liemert A; Kienle A
    Phys Med Biol; 2015 Aug; 60(15):5717-32. PubMed ID: 26158399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient determination of the epidermal optical properties using a diffusion model-based approach: Monte Carlo studies.
    Tseng SH; Hou MF
    J Biomed Opt; 2011 Aug; 16(8):087007. PubMed ID: 21895334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Method to quantitate absorption coefficients from single fiber reflectance spectra without knowledge of the scattering properties.
    Kanick SC; Robinson DJ; Sterenborg HJ; Amelink A
    Opt Lett; 2011 Aug; 36(15):2791-3. PubMed ID: 21808314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate extraction of optical properties and top layer thickness of two-layered mucosal tissue phantoms from spatially resolved reflectance spectra.
    Sung KB; Shih KW; Hsu FW; Hsieh HP; Chuang MJ; Hsiao YH; Su YH; Tien GH
    J Biomed Opt; 2014; 19(7):77002. PubMed ID: 25027003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and numerical study of the colour appearance of tattoo models.
    Shimada M; Hata J; Yamada Y; Itoh M; Uchida A; Yatagai T
    Med Biol Eng Comput; 2002 Mar; 40(2):218-24. PubMed ID: 12043804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffuse reflectance spectroscopy characterization of hemoglobin and intralipid solutions: in vitro measurements with continuous variation of absorption and scattering.
    Hernández SE; Rodríguez VD; Pérez J; Martín FA; Castellano MA; Gonzalez-Mora JL
    J Biomed Opt; 2009; 14(3):034026. PubMed ID: 19566319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Method to quantitatively estimate wavelength-dependent scattering properties from multidiameter single fiber reflectance spectra measured in a turbid medium.
    Kanick SC; Gamm UA; Sterenborg HJ; Robinson DJ; Amelink A
    Opt Lett; 2011 Aug; 36(15):2997-9. PubMed ID: 21808384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffuse reflectance spectroscopy as a tool to measure the absorption coefficient in skin: system calibration.
    Karsten AE; Singh A; Karsten PA; Braun MW
    Lasers Med Sci; 2013 Feb; 28(2):437-44. PubMed ID: 22410734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agarose-based Tissue Mimicking Optical Phantoms for Diffuse Reflectance Spectroscopy.
    Mustari A; Nishidate I; Wares MA; Maeda T; Kawauchi S; Sato S; Sato M; Aizu Y
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30199019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in tissue optical properties due to radio-frequency ablation of myocardium.
    Swartling J; Pålsson S; Platonov P; Olsson SB; Andersson-Engels S
    Med Biol Eng Comput; 2003 Jul; 41(4):403-9. PubMed ID: 12892362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reference optical phantoms for diffuse optical spectroscopy. Part 1--Error analysis of a time resolved transmittance characterization method.
    Bouchard JP; Veilleux I; Jedidi R; Noiseux I; Fortin M; Mermut O
    Opt Express; 2010 May; 18(11):11495-507. PubMed ID: 20589010
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.