BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 21054235)

  • 1. Sphingomyelin metabolism in erythrocyte membrane in asthma.
    Gupta P; Vijayan VK; Bansal SK
    J Asthma; 2010 Nov; 47(9):966-71. PubMed ID: 21054235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Murine synaptosomal lipid raft protein and lipid composition are altered by expression of human apoE 3 and 4 and by increasing age.
    Igbavboa U; Eckert GP; Malo TM; Studniski AE; Johnson LN; Yamamoto N; Kobayashi M; Fujita SC; Appel TR; Müller WE; Wood WG; Yanagisawa K
    J Neurol Sci; 2005 Mar; 229-230():225-32. PubMed ID: 15760644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in protein profile of erythrocyte membrane in bronchial asthma.
    Gupta P; Vijayan VK; Bansal SK
    J Asthma; 2012 Mar; 49(2):129-33. PubMed ID: 22277105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Changes in the lipid composition of cell membranes in patients with bronchial asthma after glucocorticosteroid therapy].
    Masuev AM; Masuev KA
    Klin Med (Mosk); 1991 Jan; 69(1):86-8. PubMed ID: 2023408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium flux and lipid spectrum in the erythrocyte membrane in essential hypertension.
    Preiss R; Prümke HJ; Sohr R; Müller E; Schmeck G; Schmidt J; Banaschak H
    Int J Clin Pharmacol Ther Toxicol; 1982 Mar; 20(3):105-12. PubMed ID: 7068282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of changes in erythrocyte and platelet phospholipid and fatty acid composition and protein oxidation in chronic obstructive pulmonary disease and asthma.
    De Castro J; Hernández-Hernández A; Rodríguez MC; Sardina JL; Llanillo M; Sánchez-Yagüe J
    Platelets; 2007 Feb; 18(1):43-51. PubMed ID: 17365853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional evidence for presence of lipid rafts in erythrocyte membranes: Gsalpha in rafts is essential for signal transduction.
    Kamata K; Manno S; Ozaki M; Takakuwa Y
    Am J Hematol; 2008 May; 83(5):371-5. PubMed ID: 18181202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of membranous lipid substrates by membranous enzymes. Hydrolysis of sphingomyelin in erythrocyte 'ghosts' and liposomes by the membranous sphingomyelinase of chicken erythrocyte 'ghosts'.
    Record M; Loyter A; Gatt S
    Biochem J; 1980 Apr; 187(1):115-21. PubMed ID: 6250532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging lipid rafts.
    Ishitsuka R; Sato SB; Kobayashi T
    J Biochem; 2005 Mar; 137(3):249-54. PubMed ID: 15809325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct evidence of lipid rafts by in situ atomic force microscopy.
    Cai M; Zhao W; Shang X; Jiang J; Ji H; Tang Z; Wang H
    Small; 2012 Apr; 8(8):1243-50. PubMed ID: 22351491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of methyl-beta-cyclodextrin on T lymphocytes lipid rafts with aging.
    Larbi A; Douziech N; Khalil A; Dupuis G; Gheraïri S; Guérard KP; Fülöp T
    Exp Gerontol; 2004 Apr; 39(4):551-8. PubMed ID: 15050290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Erythrocyte membrane lipid composition fluidity in patients with essential hypertension.
    Fu YF; Dong YZ; Li H; Lu ZM; Wang W
    Chin Med J (Engl); 1992 Oct; 105(10):803-8. PubMed ID: 1291198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sterol carrier protein-2 selectively alters lipid composition and cholesterol dynamics of caveolae/lipid raft vs nonraft domains in L-cell fibroblast plasma membranes.
    Atshaves BP; Gallegos AM; McIntosh AL; Kier AB; Schroeder F
    Biochemistry; 2003 Dec; 42(49):14583-98. PubMed ID: 14661971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiologically important secondary modifications of red cell membrane in hereditary spherocytosis-evidence for in vivo oxidation and lipid rafts protein variations.
    Margetis P; Antonelou M; Karababa F; Loutradi A; Margaritis L; Papassideri I
    Blood Cells Mol Dis; 2007; 38(3):210-20. PubMed ID: 17208471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sphingomyelin-enriched microdomains define the efficiency of native Ca(2+)-triggered membrane fusion.
    Rogasevskaia T; Coorssen JR
    J Cell Sci; 2006 Jul; 119(Pt 13):2688-94. PubMed ID: 16757517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential regulation of ceramide in lipid-rich microdomains (rafts): antagonistic role of palmitoyl:protein thioesterase and neutral sphingomyelinase 2.
    Goswami R; Ahmed M; Kilkus J; Han T; Dawson SA; Dawson G
    J Neurosci Res; 2005 Jul; 81(2):208-17. PubMed ID: 15929065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Cellular lipid dynamics].
    Baumann N; Colsch B; Lefèvre M; Portoukalian J
    J Soc Biol; 2003; 197(3):205-10. PubMed ID: 14708341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of membrane sphingomyelin and ceramide in platform formation for Fas-mediated apoptosis.
    Miyaji M; Jin ZX; Yamaoka S; Amakawa R; Fukuhara S; Sato SB; Kobayashi T; Domae N; Mimori T; Bloom ET; Okazaki T; Umehara H
    J Exp Med; 2005 Jul; 202(2):249-59. PubMed ID: 16009715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization and regulation of SR-BI in membrane rafts of HepG2 cells.
    Rhainds D; Bourgeois P; Bourret G; Huard K; Falstrault L; Brissette L
    J Cell Sci; 2004 Jul; 117(Pt 15):3095-105. PubMed ID: 15226391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasma and erythrocyte lipid composition in normal pregnancy.
    Vaysse J; Dureuil M; Pilardeau P; Garnier M
    Biol Res Pregnancy Perinatol; 1986; 7(2):89-92. PubMed ID: 3730476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.