BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 21054499)

  • 21. Characterization of oxidative stress-resistant mutants of Streptococcus thermophilus CNRZ368.
    Fernandez A; Thibessard A; Borges F; Gintz B; Decaris B; Leblond-Bourget N
    Arch Microbiol; 2004 Nov; 182(5):364-72. PubMed ID: 15378231
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure and function of a TetR family transcriptional regulator, SbtR, from thermus thermophilus HB8.
    Agari Y; Sakamoto K; Yutani K; Kuramitsu S; Shinkai A
    Proteins; 2013 Jul; 81(7):1166-78. PubMed ID: 23408580
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RNA arbitrarily primed PCR survey of genes regulated by ToxR in the deep-sea bacterium Photobacterium profundum strain SS9.
    Bidle KA; Bartlett DH
    J Bacteriol; 2001 Mar; 183(5):1688-93. PubMed ID: 11160100
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface proteins and a novel transcription factor regulate the expression of the S-layer gene in Thermus thermophilus HB8.
    Fernández-Herrero LA; Olabarría G; Berenguer J
    Mol Microbiol; 1997 Apr; 24(1):61-72. PubMed ID: 9140966
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Amount changes of tRNA modification enzymes in Thermus thermophilus HB8 cells according to culture temperatures.
    Iwashita C; Hori H
    Nucleic Acids Symp Ser (Oxf); 2006; (50):247-8. PubMed ID: 17150910
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of environmental transcriptomes by DNA microarrays.
    Parro V; Moreno-Paz M; González-Toril E
    Environ Microbiol; 2007 Feb; 9(2):453-64. PubMed ID: 17222143
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of ribonucleases in regulating global mRNA levels in the model organism Thermus thermophilus HB8.
    Ohyama H; Sakai T; Agari Y; Fukui K; Nakagawa N; Shinkai A; Masui R; Kuramitsu S
    BMC Genomics; 2014 May; 15():386. PubMed ID: 24884843
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Environmental factors affecting the expression of type IV pilus genes as well as piliation of Thermus thermophilus.
    Salzer R; Kern T; Joos F; Averhoff B
    FEMS Microbiol Lett; 2014 Aug; 357(1):56-62. PubMed ID: 24935261
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Roles of Mn-catalase and a possible heme peroxidase homologue in protection from oxidative stress in Thermus thermophilus.
    Ebihara A; Manzoku M; Fukui K; Shimada A; Morita R; Masui R; Kuramitsu S
    Extremophiles; 2015 Jul; 19(4):775-85. PubMed ID: 25997395
    [TBL] [Abstract][Full Text] [Related]  

  • 30. LdrP, a cAMP receptor protein/FNR family transcriptional regulator, serves as a positive regulator for the light-inducible gene cluster in the megaplasmid of Thermus thermophilus.
    Takano H; Agari Y; Hagiwara K; Watanabe R; Yamazaki R; Beppu T; Shinkai A; Ueda K
    Microbiology (Reading); 2014 Dec; 160(Pt 12):2650-2660. PubMed ID: 25294106
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of an antisense RNA strategy to investigate the functional significance of Mn-catalase in the extreme thermophile Thermus thermophilus.
    Moreno R; Hidalgo A; Cava F; Fernández-Lafuente R; Guisán JM; Berenguer J
    J Bacteriol; 2004 Nov; 186(22):7804-6. PubMed ID: 15516595
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification and Characterization of Preferred DNA-Binding Sites for the
    Cox JS; Moncja K; Mckinnes M; Van Dyke MW
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31284644
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Discovering the DNA-Binding Consensus of the
    Teague JL; Barrows JK; Baafi CA; Van Dyke MW
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576207
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of Preferred DNA-Binding Sites for the Thermus thermophilus Transcriptional Regulator SbtR by the Combinatorial Approach REPSA.
    Van Dyke MW; Beyer MD; Clay E; Hiam KJ; McMurry JL; Xie Y
    PLoS One; 2016; 11(7):e0159408. PubMed ID: 27428627
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of the Preferred DNA-Binding Sequence and Transcription Regulatory Network for the Thermophilic Zinc Uptake Regulator TTHA1292.
    Barrows JK; Westee AB; Parrish AY; Van Dyke MW
    J Bacteriol; 2022 Nov; 204(11):e0030322. PubMed ID: 36286513
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A CsoR family transcriptional regulator, TTHA1953, controls the sulfur oxidation pathway in Thermus thermophilus HB8.
    Barrows JK; Van Dyke MW
    J Biol Chem; 2023 Jun; 299(6):104759. PubMed ID: 37116710
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inactivation of the DNA repair genes mutS, mutL or the anti-recombination gene mutS2 leads to activation of vitamin B1 biosynthesis genes.
    Fukui K; Wakamatsu T; Agari Y; Masui R; Kuramitsu S
    PLoS One; 2011 Apr; 6(4):e19053. PubMed ID: 21552516
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermus thermophilus as biological model.
    Cava F; Hidalgo A; Berenguer J
    Extremophiles; 2009 Mar; 13(2):213-31. PubMed ID: 19156357
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of the semi-conserved histidine residue in the light-sensing domain of LitR, a MerR-type photosensory transcriptional regulator.
    Takano H; Mise K; Maruyama T; Hagiwara K; Ueda K
    Microbiology (Reading); 2016 Aug; 162(8):1500-1509. PubMed ID: 27283316
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptive Response of Thermophiles to Redox Stress and Their Role in the Process of dye Degradation From Textile Industry Wastewater.
    Aragaw TA; Bogale FM; Gessesse A
    Front Physiol; 2022; 13():908370. PubMed ID: 35795652
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.