These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 21054739)
1. Compatible solute biosynthesis in cyanobacteria. Klähn S; Hagemann M Environ Microbiol; 2011 Mar; 13(3):551-62. PubMed ID: 21054739 [TBL] [Abstract][Full Text] [Related]
2. The marine cyanobacterium Crocosphaera watsonii WH8501 synthesizes the compatible solute trehalose by a laterally acquired OtsAB fusion protein. Pade N; Compaoré J; Klähn S; Stal LJ; Hagemann M Environ Microbiol; 2012 May; 14(5):1261-71. PubMed ID: 22404882 [TBL] [Abstract][Full Text] [Related]
3. Stochastic Character Mapping, Bayesian Model Selection, and Biosynthetic Pathways Shed New Light on the Evolution of Habitat Preference in Cyanobacteria. Bianchini G; Hagemann M; Sánchez-Baracaldo P Syst Biol; 2024 Oct; 73(4):644-665. PubMed ID: 38934241 [TBL] [Abstract][Full Text] [Related]
4. Molecular biology of cyanobacterial salt acclimation. Hagemann M FEMS Microbiol Rev; 2011 Jan; 35(1):87-123. PubMed ID: 20618868 [TBL] [Abstract][Full Text] [Related]
5. Stabilization of model membranes during drying by compatible solutes involved in the stress tolerance of plants and microorganisms. Hincha DK; Hagemann M Biochem J; 2004 Oct; 383(Pt 2):277-83. PubMed ID: 15225123 [TBL] [Abstract][Full Text] [Related]
6. Salt-Regulated Accumulation of the Compatible Solutes Sucrose and Glucosylglycerol in Cyanobacteria and Its Biotechnological Potential. Kirsch F; Klähn S; Hagemann M Front Microbiol; 2019; 10():2139. PubMed ID: 31572343 [TBL] [Abstract][Full Text] [Related]
7. Identification and regulation of novel compatible solutes from hypersaline stromatolite-associated cyanobacteria. Goh F; Barrow KD; Burns BP; Neilan BA Arch Microbiol; 2010 Dec; 192(12):1031-8. PubMed ID: 20936259 [TBL] [Abstract][Full Text] [Related]
8. Heterosides--compatible solutes occurring in prokaryotic and eukaryotic phototrophs. Hagemann M; Pade N Plant Biol (Stuttg); 2015 Sep; 17(5):927-34. PubMed ID: 25996303 [TBL] [Abstract][Full Text] [Related]
9. Freshwater Cyanobacterium Liang Y; Zhang M; Wang M; Zhang W; Qiao C; Luo Q; Lu X Appl Environ Microbiol; 2020 Mar; 86(7):. PubMed ID: 31953341 [TBL] [Abstract][Full Text] [Related]
10. Physiological and Metabolic Responses of Freshwater and Brackish-Water Strains of Microcystis aeruginosa Acclimated to a Salinity Gradient: Insight into Salt Tolerance. Georges des Aulnois M; Roux P; Caruana A; Réveillon D; Briand E; Hervé F; Savar V; Bormans M; Amzil Z Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444201 [TBL] [Abstract][Full Text] [Related]
11. Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. Chen Z; Cuin TA; Zhou M; Twomey A; Naidu BP; Shabala S J Exp Bot; 2007; 58(15-16):4245-55. PubMed ID: 18182428 [TBL] [Abstract][Full Text] [Related]
12. Phylogenetic distribution of compatible solute synthesis genes support a freshwater origin for cyanobacteria. Blank CE J Phycol; 2013 Oct; 49(5):880-95. PubMed ID: 27007313 [TBL] [Abstract][Full Text] [Related]
13. Involvement of the compatible solutes trehalose and sucrose in the response to salt stress of a cyanobacterial Scytonema species isolated from desert soils. Page-Sharp M; Behm CA; Smith GD Biochim Biophys Acta; 1999 Nov; 1472(3):519-28. PubMed ID: 10564766 [TBL] [Abstract][Full Text] [Related]
14. Salt stress-induced changes in the transcriptome, compatible solutes, and membrane lipids in the facultatively phototrophic bacterium Rhodobacter sphaeroides. Tsuzuki M; Moskvin OV; Kuribayashi M; Sato K; Retamal S; Abo M; Zeilstra-Ryalls J; Gomelsky M Appl Environ Microbiol; 2011 Nov; 77(21):7551-9. PubMed ID: 21908636 [TBL] [Abstract][Full Text] [Related]
15. An orphan two-component response regulator Slr1588 involves salt tolerance by directly regulating synthesis of compatible solutes in photosynthetic Synechocystis sp. PCC 6803. Chen L; Wu L; Zhu Y; Song Z; Wang J; Zhang W Mol Biosyst; 2014 Jul; 10(7):1765-74. PubMed ID: 24718497 [TBL] [Abstract][Full Text] [Related]
16. Expression of the ggpPS gene for glucosylglycerol biosynthesis from Azotobacter vinelandii improves the salt tolerance of Arabidopsis thaliana. Klähn S; Marquardt DM; Rollwitz I; Hagemann M J Exp Bot; 2009; 60(6):1679-89. PubMed ID: 19363207 [TBL] [Abstract][Full Text] [Related]
17. Uptake and use of the osmoprotective compounds trehalose, glucosylglycerol, and sucrose by the cyanobacterium Synechocystis sp. PCC6803. Mikkat S; Effmert U; Hagemann M Arch Microbiol; 1997; 167(2-3):112-8. PubMed ID: 9133317 [TBL] [Abstract][Full Text] [Related]
18. Osmotically induced intracellular trehalose, but not glycine betaine accumulation promotes desiccation tolerance in Escherichia coli. Welsh DT; Herbert RA FEMS Microbiol Lett; 1999 May; 174(1):57-63. PubMed ID: 10234822 [TBL] [Abstract][Full Text] [Related]
19. The novel strain Desmonostoc salinum CCM-UFV059 shows higher salt and desiccation resistance compared to the model strain Nostoc sp. PCC7120. de Alvarenga LV; Lucius S; Vaz MGMV; Araújo WL; Hagemann M J Phycol; 2020 Apr; 56(2):496-506. PubMed ID: 31925964 [TBL] [Abstract][Full Text] [Related]
20. Cellular adaptation of Clostridioides difficile to high salinity encompasses a compatible solute-responsive change in cell morphology. Michel AM; Borrero-de Acuña JM; Molinari G; Ünal CM; Will S; Derksen E; Barthels S; Bartram W; Schrader M; Rohde M; Zhang H; Hoffmann T; Neumann-Schaal M; Bremer E; Jahn D Environ Microbiol; 2022 Mar; 24(3):1499-1517. PubMed ID: 35106888 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]