These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 21054868)

  • 1. Thermodynamically consistent Bayesian analysis of closed biochemical reaction systems.
    Jenkinson G; Zhong X; Goutsias J
    BMC Bioinformatics; 2010 Nov; 11():547. PubMed ID: 21054868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamically consistent model calibration in chemical kinetics.
    Jenkinson G; Goutsias J
    BMC Syst Biol; 2011 May; 5():64. PubMed ID: 21548948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of approximation techniques for variance-based sensitivity analysis of biochemical reaction systems.
    Zhang HX; Goutsias J
    BMC Bioinformatics; 2010 May; 11():246. PubMed ID: 20462443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parameter inference for discretely observed stochastic kinetic models using stochastic gradient descent.
    Wang Y; Christley S; Mjolsness E; Xie X
    BMC Syst Biol; 2010 Jul; 4():99. PubMed ID: 20663171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab initio prediction of thermodynamically feasible reaction directions from biochemical network stoichiometry.
    Yang F; Qian H; Beard DA
    Metab Eng; 2005 Jul; 7(4):251-9. PubMed ID: 16140239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A practical guide to pseudo-marginal methods for computational inference in systems biology.
    Warne DJ; Baker RE; Simpson MJ
    J Theor Biol; 2020 Jul; 496():110255. PubMed ID: 32223995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parameter balancing: consistent parameter sets for kinetic metabolic models.
    Lubitz T; Liebermeister W
    Bioinformatics; 2019 Oct; 35(19):3857-3858. PubMed ID: 30793200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BEST: Bayesian estimation of species trees under the coalescent model.
    Liu L
    Bioinformatics; 2008 Nov; 24(21):2542-3. PubMed ID: 18799483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A general framework for thermodynamically consistent parameterization and efficient sampling of enzymatic reactions.
    Saa P; Nielsen LK
    PLoS Comput Biol; 2015 Apr; 11(4):e1004195. PubMed ID: 25874556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamically based constraints for rate coefficients of large biochemical networks.
    Vlad MO; Ross J
    Wiley Interdiscip Rev Syst Biol Med; 2009; 1(3):348-358. PubMed ID: 20836002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BISEN: Biochemical Simulation Environment.
    Vanlier J; Wu F; Qi F; Vinnakota KC; Han Y; Dash RK; Yang F; Beard DA
    Bioinformatics; 2009 Mar; 25(6):836-7. PubMed ID: 19244386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probabilistic sensitivity analysis of biochemical reaction systems.
    Zhang HX; Dempsey WP; Goutsias J
    J Chem Phys; 2009 Sep; 131(9):094101. PubMed ID: 19739843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extraction of elementary rate constants from global network analysis of E. coli central metabolism.
    Zhao J; Ridgway D; Broderick G; Kovalenko A; Ellison M
    BMC Syst Biol; 2008 May; 2():41. PubMed ID: 18462493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamically feasible kinetic models of reaction networks.
    Ederer M; Gilles ED
    Biophys J; 2007 Mar; 92(6):1846-57. PubMed ID: 17208985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy balance for analysis of complex metabolic networks.
    Beard DA; Liang SD; Qian H
    Biophys J; 2002 Jul; 83(1):79-86. PubMed ID: 12080101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid simulation and analysis of isotopomer distributions using constraints based on enzyme mechanisms: an example from HT29 cancer cells.
    Selivanov VA; Meshalkina LE; Solovjeva ON; Kuchel PW; Ramos-Montoya A; Kochetov GA; Lee PW; Cascante M
    Bioinformatics; 2005 Sep; 21(17):3558-64. PubMed ID: 16002431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental design for efficient identification of gene regulatory networks using sparse Bayesian models.
    Steinke F; Seeger M; Tsuda K
    BMC Syst Biol; 2007 Nov; 1():51. PubMed ID: 18021391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating parameters for generalized mass action models with connectivity information.
    Ko CL; Voit EO; Wang FS
    BMC Bioinformatics; 2009 May; 10():140. PubMed ID: 19432964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics.
    Aijö T; Lähdesmäki H
    Bioinformatics; 2009 Nov; 25(22):2937-44. PubMed ID: 19706742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamically consistent estimation of Gibbs free energy from data: data reconciliation approach.
    Salike S; Bhatt N
    Bioinformatics; 2020 Feb; 36(4):1219-1225. PubMed ID: 31584610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.