BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 21055386)

  • 1. The cytochrome c₈ involved in the nitrite reduction pathway acts also as electron donor to the photosynthetic reaction center in Rubrivivax gelatinosus.
    Nagashima S; Shimada K; Verméglio A; Nagashima KV
    Biochim Biophys Acta; 2011 Feb; 1807(2):189-96. PubMed ID: 21055386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytochrome c4 can be involved in the photosynthetic electron transfer system in the purple bacterium Rubrivivax gelatinosus.
    Ohmine M; Matsuura K; Shimada K; Alric J; Verméglio A; Nagashima KV
    Biochemistry; 2009 Sep; 48(38):9132-9. PubMed ID: 19697907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-potential iron-sulfur protein (HiPIP) is the major electron donor to the reaction center complex in photosynthetically growing cells of the purple bacterium Rubrivivax gelatinosus.
    Nagashima KV; Matsuura K; Shimada K; Verméglio A
    Biochemistry; 2002 Nov; 41(47):14028-32. PubMed ID: 12437360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photo-induced electron transfer in intact cells of Rubrivivax gelatinosus mutants deleted in the RC-bound tetraheme cytochrome: insight into evolution of photosynthetic electron transport.
    Verméglio A; Nagashima S; Alric J; Arnoux P; Nagashima KV
    Biochim Biophys Acta; 2012 May; 1817(5):689-96. PubMed ID: 22305913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino acid sequences and distribution of high-potential iron-sulfur proteins that donate electrons to the photosynthetic reaction center in phototropic proteobacteria.
    Van Driessche G; Vandenberghe I; Devreese B; Samyn B; Meyer TE; Leigh R; Cusanovich MA; Bartsch RG; Fischer U; Van Beeumen JJ
    J Mol Evol; 2003 Aug; 57(2):181-99. PubMed ID: 14562962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chimeric photosynthetic reaction center complex of purple bacteria composed of the core subunits of Rubrivivax gelatinosus and the cytochrome subunit of Blastochloris viridis.
    Maki H; Matsuura K; Shimada K; Nagashima KV
    J Biol Chem; 2003 Feb; 278(6):3921-8. PubMed ID: 12464624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shortcut of the photosynthetic electron transfer in a mutant lacking the reaction center-bound cytochrome subunit by gene disruption in a purple bacterium, Rubrivivax gelatinosus.
    Nagashima KV; Shimada K; Matsuura K
    FEBS Lett; 1996 May; 385(3):209-13. PubMed ID: 8647253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two distinct binding sites for high potential iron-sulfur protein and cytochrome c on the reaction center-bound cytochrome of Rubrivivax gelatinosus.
    Alric J; Yoshida M; Nagashima KV; Hienerwadel R; Parot P; Verméglio A; Chen SW; Pellequer JL
    J Biol Chem; 2004 Jul; 279(31):32545-53. PubMed ID: 15155756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction site for high-potential iron-sulfur protein on the tetraheme cytochrome subunit bound to the photosynthetic reaction center of Rubrivivax gelatinosus.
    Osyczka A; Nagashima KV; Shimada K; Matsuura K
    Biochemistry; 1999 Mar; 38(10):2861-5. PubMed ID: 10074337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple Rieske genes in prokaryotes: exchangeable Rieske subunits in the cytochrome bc-complex of Rubrivivax gelatinosus.
    Ouchane S; Nitschke W; Bianco P; Vermeglio A; Astier C
    Mol Microbiol; 2005 Jul; 57(1):261-75. PubMed ID: 15948965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new membrane-bound cytochrome c works as an electron donor to the photosynthetic reaction center complex in the purple bacterium, Rhodovulum sulfidophilum.
    Kimura Y; Alric J; Verméglio A; Masuda S; Hagiwara Y; Matsuura K; Shimada K; Nagashima KV
    J Biol Chem; 2007 Mar; 282(9):6463-72. PubMed ID: 17197696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different mechanisms of the binding of soluble electron donors to the photosynthetic reaction center of Rubrivivax gelatinosus and Blastochloris viridis.
    Osyczka A; Nagashima KV; Sogabe S; Miki K; Shimada K; Matsuura K
    J Biol Chem; 2001 Jun; 276(26):24108-12. PubMed ID: 11313347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational analyses of the photosynthetic reaction center-bound triheme cytochrome subunit and cytochrome c2 in the purple bacterium Rhodovulum sulfidophilum.
    Masuda S; Tsukatani Y; Kimura Y; Nagashima KV; Shimada K; Matsuura K
    Biochemistry; 2002 Sep; 41(37):11211-7. PubMed ID: 12220186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction site for soluble cytochromes on the tetraheme cytochrome subunit bound to the bacterial photosynthetic reaction center mapped by site-directed mutagenesis.
    Osyczka A; Nagashima KV; Sogabe S; Miki K; Yoshida M; Shimada K; Matsuura K
    Biochemistry; 1998 Aug; 37(34):11732-44. PubMed ID: 9718296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two c-type cytochromes, NirM and NirC, encoded in the nir gene cluster of Pseudomonas aeruginosa act as electron donors for nitrite reductase.
    Hasegawa N; Arai H; Igarashi Y
    Biochem Biophys Res Commun; 2001 Nov; 288(5):1223-30. PubMed ID: 11700043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic performance and energy profile in a roller coaster electron transfer chain: a study of modified tetraheme-reaction center constructs.
    Alric J; Lavergne J; Rappaport F; Verméglio A; Matsuura K; Shimada K; Nagashima KV
    J Am Chem Soc; 2006 Mar; 128(12):4136-45. PubMed ID: 16551123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron transfer from HiPIP to the photooxidized tetraheme cytochrome subunit of Allochromatium vinosum reaction center: new insights from site-directed mutagenesis and computational studies.
    Venturoli G; Mamedov MD; Mansy SS; Musiani F; Strocchi M; Francia F; Semenov AY; Cowan JA; Ciurli S
    Biochemistry; 2004 Jan; 43(2):437-45. PubMed ID: 14717598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dark aerobic growth conditions induce the synthesis of a high midpoint potential cytochrome c8 in the photosynthetic bacterium Rubrivivax gelatinosus.
    Menin L; Yoshida M; Jaquinod M; Nagashima KV; Matsuura K; Parot P; Verméglio A
    Biochemistry; 1999 Nov; 38(46):15238-44. PubMed ID: 10563807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soluble cytochrome c-554, CycA, is not essential for photosynthetic electron transfer in Chlorobium tepidum.
    Tsukatani Y; Miyamoto R; Itoh S; Oh-oka H
    FEBS Lett; 2006 Apr; 580(9):2191-4. PubMed ID: 16579991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo participation of a high potential iron-sulfur protein as electron donor to the photochemical reaction center of Rubrivivax gelatinosus.
    Schoepp B; Parot P; Menin L; Gaillard J; Richaud P; Verméglio A
    Biochemistry; 1995 Sep; 34(37):11736-42. PubMed ID: 7547905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.