BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 21055398)

  • 1. Incorporation of DMSO and dextran-40 into a gelatin/alginate hydrogel for controlled assembled cell cryopreservation.
    Wang X; Xu H
    Cryobiology; 2010 Dec; 61(3):345-51. PubMed ID: 21055398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Cryopreservation on Cell-Laden Hydrogels: Comparison of Different Cryoprotectants.
    Cagol N; Bonani W; Maniglio D; Migliaresi C; Motta A
    Tissue Eng Part C Methods; 2018 Jan; 24(1):20-31. PubMed ID: 28911258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of alginate concentration on the viability, cryostorage, and angiogenic activity of encapsulated fibroblasts.
    Mohanty S; Wu Y; Chakraborty N; Mohanty P; Ghosh G
    Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():269-77. PubMed ID: 27157752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds.
    Awad HA; Wickham MQ; Leddy HA; Gimble JM; Guilak F
    Biomaterials; 2004 Jul; 25(16):3211-22. PubMed ID: 14980416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alginate/polyoxyethylene and alginate/gelatin hydrogels: preparation, characterization, and application in tissue engineering.
    Aroguz AZ; Baysal K; Adiguzel Z; Baysal BM
    Appl Biochem Biotechnol; 2014 May; 173(2):433-48. PubMed ID: 24728760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dextran-Based Hydrogel as a New Tool for BALB/c 3T3 Cell Cryopreservation Without Dimethyl Sulfoxide.
    Pereira J; Ferraretto X; Patrat C; Meddahi-Pellé A
    Biopreserv Biobank; 2019; 17(1):2-10. PubMed ID: 30183333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ gelable glycation-resistant hydrogels composed of gelatin and oxidized alginate.
    Zhang H; Liao H; Chen W
    J Biomater Sci Polym Ed; 2010; 21(3):329-42. PubMed ID: 20178689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of micropatterned alginate-gelatin and k-carrageenan hydrogels of defined shapes using simple wax mould method as a platform for stem cell/induced Pluripotent Stem Cells (iPSC) culture.
    Vignesh S; Gopalakrishnan A; M R P; Nair SV; Jayakumar R; Mony U
    Int J Biol Macromol; 2018 Jun; 112():737-744. PubMed ID: 29427684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRYOPRESERVATION STRATEGY FOR TISSUE ENGINEERING CONSTRUCTS CONSISTING OF HUMAN MESENHYMAL STEM CELLS AND HYDROGEL BIOMATERIALS.
    Wu Y; Wen F; Gouk SS; Lee EH; Kuleshova L
    Cryo Letters; 2015; 36(5):325-35. PubMed ID: 26574680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential physical, rheological, and biological properties of rapid in situ gelable hydrogels composed of oxidized alginate and gelatin derived from marine or porcine sources.
    Liao H; Zhang H; Chen W
    J Mater Sci Mater Med; 2009 Jun; 20(6):1263-71. PubMed ID: 19184370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preferential vitrification of water in small alginate microcapsules significantly augments cell cryopreservation by vitrification.
    Zhang W; Yang G; Zhang A; Xu LX; He X
    Biomed Microdevices; 2010 Feb; 12(1):89-96. PubMed ID: 19787454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of oxidized alginate-gelatin-BCP hydrogels and evaluation of the microstructure, material properties and biocompatibility for bone tissue regeneration.
    Nguyen TP; Lee BT
    J Biomater Appl; 2012 Sep; 27(3):311-21. PubMed ID: 21680610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alginate and alginate/gelatin microspheres for human adipose-derived stem cell encapsulation and differentiation.
    Yao R; Zhang R; Luan J; Lin F
    Biofabrication; 2012 Jun; 4(2):025007. PubMed ID: 22556122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alginate-based hydrogels with improved adhesive properties for cell encapsulation.
    Sarker B; Rompf J; Silva R; Lang N; Detsch R; Kaschta J; Fabry B; Boccaccini AR
    Int J Biol Macromol; 2015; 78():72-8. PubMed ID: 25847839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration.
    Balakrishnan B; Joshi N; Jayakrishnan A; Banerjee R
    Acta Biomater; 2014 Aug; 10(8):3650-63. PubMed ID: 24811827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Augmenting in vitro osteogenesis of a glycine-arginine-glycine-aspartic-conjugated oxidized alginate-gelatin-biphasic calcium phosphate hydrogel composite and in vivo bone biogenesis through stem cell delivery.
    Linh NT; Paul K; Kim B; Lee BT
    J Biomater Appl; 2016 Nov; 31(5):661-673. PubMed ID: 27604088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alginate beads as a tool to handle, cryopreserve and culture isolated human primordial/primary follicles.
    Camboni A; Van Langendonckt A; Donnez J; Vanacker J; Dolmans MM; Amorim CA
    Cryobiology; 2013 Aug; 67(1):64-9. PubMed ID: 23688636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Injectable photo crosslinked enhanced double-network hydrogels from modified sodium alginate and gelatin.
    Yuan L; Wu Y; Gu QS; El-Hamshary H; El-Newehy M; Mo X
    Int J Biol Macromol; 2017 Mar; 96():569-577. PubMed ID: 28017764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of photo-crosslinked chitosan- gelatin scaffold in sodium alginate hydrogel for chondrocyte culture.
    Zhao P; Deng C; Xu H; Tang X; He H; Lin C; Su J
    Biomed Mater Eng; 2014; 24(1):633-41. PubMed ID: 24211948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interpenetrating gelatin/alginate mixed hydrogel: The simplest method to prepare an autoclavable scaffold.
    Mori H; Taketsuna Y; Shimogama K; Nishi K; Hara M
    J Biosci Bioeng; 2024 Jun; 137(6):463-470. PubMed ID: 38570220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.