These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 21055753)

  • 81. Kinematics of the Shoulder Girdle During Pointing: Coordination Between Joints and their Contribution to the Peri-Personal Workspace.
    Roby-Brami A; Robertson JV; Roren A; Lefèvre-Colau MM
    Motor Control; 2017 Apr; 21(2):168-194. PubMed ID: 27111914
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Accuracy of noninvasive, single-plane fluoroscopic analysis for measurement of three-dimensional femorotibial joint poses in dogs.
    Jones SC; Kim SE; Banks SA; Conrad BP; Abbasi AZ; Tremolada G; Lewis DD; Pozzi A
    Am J Vet Res; 2014 May; 75(5):477-85. PubMed ID: 24762020
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Dynamic measurements of three-dimensional scapular kinematics: a validation study.
    Karduna AR; McClure PW; Michener LA; Sennett B
    J Biomech Eng; 2001 Apr; 123(2):184-90. PubMed ID: 11340880
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Estimating muscle attachment contours by transforming geometrical bone models.
    Kaptein BL; van der Helm FC
    J Biomech; 2004 Mar; 37(3):263-73. PubMed ID: 14757444
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Subject-specific model-derived kinematics of the shoulder based on skin markers during arm abduction up to 180° - assessment of 4 gleno-humeral joint models.
    Dumas R; Duprey S
    J Biomech; 2022 May; 136():111061. PubMed ID: 35344828
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Three-dimensional recording and description of motions of the shoulder mechanism.
    van der Helm FC; Pronk GM
    J Biomech Eng; 1995 Feb; 117(1):27-40. PubMed ID: 7609482
    [TBL] [Abstract][Full Text] [Related]  

  • 87. A comparison of two non-invasive methods for measuring scapular orientation in functional positions.
    Rapp EA; Richardson RT; Russo SA; Rose WC; Richards JG
    J Biomech; 2017 Aug; 61():269-274. PubMed ID: 28823505
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Active and passive scapulohumeral movement in healthy persons: a comparison.
    Price CI; Franklin P; Rodgers H; Curless RH; Johnson GR
    Arch Phys Med Rehabil; 2000 Jan; 81(1):28-31. PubMed ID: 10638872
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Accuracy of the axillary projection to determine fracture angulation of the proximal humerus.
    Simon JA; Puopolo SM; Capla EL; Egol KA; Zuckerman JD; Koval KJ
    Orthopedics; 2004 Feb; 27(2):205-7. PubMed ID: 14992388
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Prediction bands and intervals for the scapulo-humeral coordination based on the Bootstrap and two Gaussian methods.
    Cutti AG; Parel I; Raggi M; Petracci E; Pellegrini A; Accardo AP; Sacchetti R; Porcellini G
    J Biomech; 2014 Mar; 47(5):1035-44. PubMed ID: 24485513
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Sensors on the humerus are not necessary for an accurate assessment of humeral kinematics in constrained movements.
    Lin YL; Karduna AR
    J Appl Biomech; 2013 Aug; 29(4):496-500. PubMed ID: 23182958
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Measurement of the total motion between two body segments. II. Description of application.
    Kinzel GL; Hillberry BM; Hall AS; Van Sickle DC; Harvey WM
    J Biomech; 1972 May; 5(3):283-93. PubMed ID: 4666533
    [No Abstract]   [Full Text] [Related]  

  • 93. Kinematic analysis of the cat shoulder girdle during treadmill locomotion: an X-ray study.
    Boczek-Funcke A; Kuhtz-Buschbeck JP; Illert M
    Eur J Neurosci; 1996 Feb; 8(2):261-72. PubMed ID: 8714697
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Studying upper-limb kinematics using inertial sensors: a cross-sectional study.
    Roldán-Jiménez C; Cuesta-Vargas AI
    BMC Res Notes; 2015 Oct; 8():532. PubMed ID: 26433573
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Dynamic stability of the glenohumeral joint.
    Saha AK
    Acta Orthop Scand; 1971; 42(6):491-505. PubMed ID: 5144199
    [No Abstract]   [Full Text] [Related]  

  • 96. Procedure to describe clavicular motion.
    Gutierrez Delgado G; De Beule M; Ortega Cardentey DR; Segers P; Iznaga Benítez AM; Rodríguez Moliner T; Verhegghe B; Palmans T; Van Hoof T; Van Tongel A
    J Shoulder Elbow Surg; 2017 Mar; 26(3):490-496. PubMed ID: 28081995
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Development and evaluation of the measurement system for the human shoulder joint based on the 6 DOF kinematic modelling.
    Shimomura Y; Iwanaga K; Harada H; Katsuura T
    J Physiol Anthropol Appl Human Sci; 2000 Jan; 19(1):43-51. PubMed ID: 10979249
    [TBL] [Abstract][Full Text] [Related]  

  • 98. A numerical tool for the reconstruction of the physiological kinematics of the glenohumeral joint.
    Amadi HO; Hansen UN; Bull AM
    Proc Inst Mech Eng H; 2009 Oct; 223(7):833-7. PubMed ID: 19908422
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Use of uncalibrated biplanar radiography for the measurement of skeletal coordinates around the shoulder girdle.
    Johnson GR; Buxton T; House D; Bogduk N
    J Biomed Eng; 1992 Nov; 14(6):490-4. PubMed ID: 1434571
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Accuracy of biplane x-ray imaging combined with model-based tracking for measuring in-vivo patellofemoral joint motion.
    Bey MJ; Kline SK; Tashman S; Zauel R
    J Orthop Surg Res; 2008 Sep; 3():38. PubMed ID: 18771582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.