These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 21055791)
1. Sorption of the antiparasitic drug eprinomectin in three soils. Litskas VD; Karamanlis XN; Batzias GC; Kamarianos AP Chemosphere; 2011 Jan; 82(2):193-8. PubMed ID: 21055791 [TBL] [Abstract][Full Text] [Related]
2. Abamectin in soils: Analytical methods, kinetics, sorption and dissipation. Dionisio AC; Rath S Chemosphere; 2016 May; 151():17-29. PubMed ID: 26923238 [TBL] [Abstract][Full Text] [Related]
3. Are the parasiticidal avermectins resistant to dissipation in the environment? The case of eprinomectin. Litskas VD; Karamanlis XN; Batzias GC; Tsiouris SE Environ Int; 2013 Oct; 60():48-55. PubMed ID: 24013019 [TBL] [Abstract][Full Text] [Related]
4. Sorption and mobility of ivermectin in different soils. Krogh KA; Søeborg T; Brodin B; Halling-Sørensen B J Environ Qual; 2008; 37(6):2202-11. PubMed ID: 18948473 [TBL] [Abstract][Full Text] [Related]
5. Mobility of pharmaceutical compounds in the terrestrial environment: Adsorption kinetics of the macrocyclic lactone eprinomectin in soils. Vassilis LD; George BC; Charalampos PG; Athina PV; Xanthippos KN Chemosphere; 2016 Feb; 144():1201-6. PubMed ID: 26469933 [TBL] [Abstract][Full Text] [Related]
6. Aerobic dissipation of avermectins and moxidectin in subtropical soils and dissipation of abamectin in a field study. de Oliveira Ferreira F; Porto RS; Rath S Ecotoxicol Environ Saf; 2019 Nov; 183():109489. PubMed ID: 31394379 [TBL] [Abstract][Full Text] [Related]
7. Fate of ivermectin in the terrestrial and aquatic environment: mobility, degradation, and toxicity towards Daphnia similis. Rath S; Pereira LA; Bosco SM; Maniero MG; Fostier AH; Guimarães JR Environ Sci Pollut Res Int; 2016 Mar; 23(6):5654-66. PubMed ID: 26578379 [TBL] [Abstract][Full Text] [Related]
8. Eprinomectin antiparasitic affects survival, reproduction and behavior of Folsomia candida biomarker, and its toxicity depends on the type of soil. Serafini S; Soares JG; Perosa CF; Picoli F; Segat JC; Da Silva AS; Baretta D Environ Toxicol Pharmacol; 2019 Nov; 72():103262. PubMed ID: 31634705 [TBL] [Abstract][Full Text] [Related]
9. Sorption of 3,4-dichloroaniline on four contrasting Greek agricultural soils and the effect of liming. Droulia FE; Kati V; Giannopolitis CN J Environ Sci Health B; 2011; 46(5):404-10. PubMed ID: 21614714 [TBL] [Abstract][Full Text] [Related]
10. Sorption behaviors of antimicrobial and antiparasitic veterinary drugs on subtropical soils. Rath S; Fostier AH; Pereira LA; Dioniso AC; de Oliveira Ferreira F; Doretto KM; Maniero Peruchi L; Viera A; de Oliveira Neto OF; Dal Bosco SM; Martínez-Mejía MJ Chemosphere; 2019 Jan; 214():111-122. PubMed ID: 30261417 [TBL] [Abstract][Full Text] [Related]
11. Adsorption-desorption and leaching of pyraclostrobin in Indian soils. Reddy SN; Gupta S; Gajbhiye VT J Environ Sci Health B; 2013; 48(11):948-59. PubMed ID: 23998307 [TBL] [Abstract][Full Text] [Related]
12. Adsorption and desorption of chlorpyrifos to soils and sediments. Gebremariam SY; Beutel MW; Yonge DR; Flury M; Harsh JB Rev Environ Contam Toxicol; 2012; 215():123-75. PubMed ID: 22057931 [TBL] [Abstract][Full Text] [Related]
13. Adsorption, desorption and mobility of cyfluthrin in three Malaysian tropical soils of different textures. Lsmail BS; Choo LY; Salmijah S; Halimah M; Tayeb MA J Environ Biol; 2015 Sep; 36(5):1105-11. PubMed ID: 26521552 [TBL] [Abstract][Full Text] [Related]
14. Adsorption-desorption of tricyclazole: effect of soil types and organic matter. Kumar N; Mukherjee I; Varghese E Environ Monit Assess; 2015 Mar; 187(3):61. PubMed ID: 25647794 [TBL] [Abstract][Full Text] [Related]
15. Sorption, desorption, and degradation of (4-chloro-2-methylphenoxy)acetic acid in representative soils of the Danubian Lowland, Slovakia. Hiller E; Tatarková V; Šimonovičová A; Bartal' M Chemosphere; 2012 Apr; 87(5):437-44. PubMed ID: 22206646 [TBL] [Abstract][Full Text] [Related]
16. Analysis of the dissipation kinetics of ivermectin at different temperatures and in four different soils. Krogh KA; Jensen GG; Schneider MK; Fenner K; Halling-Sørensen B Chemosphere; 2009 May; 75(8):1097-104. PubMed ID: 19217643 [TBL] [Abstract][Full Text] [Related]
17. Adsorption and Desorption of Carbendazim and Thiamethoxam in Five Different Agricultural Soils. Han L; Ge Q; Mei J; Cui Y; Xue Y; Yu Y; Fang H Bull Environ Contam Toxicol; 2019 Apr; 102(4):550-554. PubMed ID: 30778615 [TBL] [Abstract][Full Text] [Related]
18. Fate and transport of chlormequat in subsurface environments. Juhler RK; Henriksen T; Rosenbom AE; Kjaer J Environ Sci Pollut Res Int; 2010 Jul; 17(6):1245-56. PubMed ID: 20177799 [TBL] [Abstract][Full Text] [Related]
19. Sorption and desorption of sulfadimethoxine, sulfaquinoxaline and sulfamethazine antimicrobials in Brazilian soils. Doretto KM; Peruchi LM; Rath S Sci Total Environ; 2014 Apr; 476-477():406-14. PubMed ID: 24486496 [TBL] [Abstract][Full Text] [Related]
20. Time and temperature dependent adsorption-desorption behaviour of pretilachlor in soil. Kaur P; Kaur P Ecotoxicol Environ Saf; 2018 Oct; 161():145-155. PubMed ID: 29879575 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]