BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 21056045)

  • 1. AFP-Pred: A random forest approach for predicting antifreeze proteins from sequence-derived properties.
    Kandaswamy KK; Chou KC; Martinetz T; Möller S; Suganthan PN; Sridharan S; Pugalenthi G
    J Theor Biol; 2011 Feb; 270(1):56-62. PubMed ID: 21056045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RAFP-Pred: Robust Prediction of Antifreeze Proteins Using Localized Analysis of n-Peptide Compositions.
    Khan S; Naseem I; Togneri R; Bennamoun M
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(1):244-250. PubMed ID: 28113406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AFP-CMBPred: Computational identification of antifreeze proteins by extending consensus sequences into multi-blocks evolutionary information.
    Ali F; Akbar S; Ghulam A; Maher ZA; Unar A; Talpur DB
    Comput Biol Med; 2021 Dec; 139():105006. PubMed ID: 34749096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chou's pseudo amino acid composition improves sequence-based antifreeze protein prediction.
    Mondal S; Pai PP
    J Theor Biol; 2014 Sep; 356():30-5. PubMed ID: 24732262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TargetFreeze: Identifying Antifreeze Proteins via a Combination of Weights using Sequence Evolutionary Information and Pseudo Amino Acid Composition.
    He X; Han K; Hu J; Yan H; Yang JY; Shen HB; Yu DJ
    J Membr Biol; 2015 Dec; 248(6):1005-14. PubMed ID: 26058944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iAFP-Ense: An Ensemble Classifier for Identifying Antifreeze Protein by Incorporating Grey Model and PSSM into PseAAC.
    Xiao X; Hui M; Liu Z
    J Membr Biol; 2016 Dec; 249(6):845-854. PubMed ID: 27812737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using support vector machine and evolutionary profiles to predict antifreeze protein sequences.
    Zhao X; Ma Z; Yin M
    Int J Mol Sci; 2012; 13(2):2196-2207. PubMed ID: 22408447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Effective Antifreeze Protein Predictor with Ensemble Classifiers and Comprehensive Sequence Descriptors.
    Yang R; Zhang C; Gao R; Zhang L
    Int J Mol Sci; 2015 Sep; 16(9):21191-214. PubMed ID: 26370959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AFP-LSE: Antifreeze Proteins Prediction Using Latent Space Encoding of Composition of k-Spaced Amino Acid Pairs.
    Usman M; Khan S; Lee JA
    Sci Rep; 2020 Apr; 10(1):7197. PubMed ID: 32345989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and application of antifreeze proteins from Antarctic bacteria.
    Muñoz PA; Márquez SL; González-Nilo FD; Márquez-Miranda V; Blamey JM
    Microb Cell Fact; 2017 Aug; 16(1):138. PubMed ID: 28784139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An insight into the molecular basis for convergent evolution in fish antifreeze Proteins.
    Nath A; Chaube R; Subbiah K
    Comput Biol Med; 2013 Aug; 43(7):817-21. PubMed ID: 23746722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity.
    Marshall CB; Tomczak MM; Gauthier SY; Kuiper MJ; Lankin C; Walker VK; Davies PL
    Biochemistry; 2004 Jan; 43(1):148-54. PubMed ID: 14705940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction and analysis of antifreeze proteins.
    Miyata R; Moriwaki Y; Terada T; Shimizu K
    Heliyon; 2021 Sep; 7(9):e07953. PubMed ID: 34604556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural characteristics of a novel antifreeze protein from the longhorn beetle Rhagium inquisitor.
    Kristiansen E; Ramløv H; Højrup P; Pedersen SA; Hagen L; Zachariassen KE
    Insect Biochem Mol Biol; 2011 Feb; 41(2):109-17. PubMed ID: 21078390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperactive antifreeze protein from fish contains multiple ice-binding sites.
    Graham LA; Marshall CB; Lin FH; Campbell RL; Davies PL
    Biochemistry; 2008 Feb; 47(7):2051-63. PubMed ID: 18225917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ordered surface carbons distinguish antifreeze proteins and their ice-binding regions.
    Doxey AC; Yaish MW; Griffith M; McConkey BJ
    Nat Biotechnol; 2006 Jul; 24(7):852-5. PubMed ID: 16823370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of antifreeze proteins on the vitrification of mouse oocytes: comparison of three different antifreeze proteins.
    Lee HH; Lee HJ; Kim HJ; Lee JH; Ko Y; Kim SM; Lee JR; Suh CS; Kim SH
    Hum Reprod; 2015 Sep; 30(9):2110-9. PubMed ID: 26202918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of hyperactive, repetitive antifreeze proteins in beetles.
    Graham LA; Qin W; Lougheed SC; Davies PL; Walker VK
    J Mol Evol; 2007 Apr; 64(4):387-98. PubMed ID: 17443386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences.
    Hanada Y; Nishimiya Y; Miura A; Tsuda S; Kondo H
    FEBS J; 2014 Aug; 281(16):3576-90. PubMed ID: 24938370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antifreeze and ice nucleator proteins in terrestrial arthropods.
    Duman JG
    Annu Rev Physiol; 2001; 63():327-57. PubMed ID: 11181959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.