BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 21056419)

  • 1. The relative contributions of non-enzymatic glycation and cortical porosity on the fracture toughness of aging bone.
    Tang SY; Vashishth D
    J Biomech; 2011 Jan; 44(2):330-6. PubMed ID: 21056419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of intracortical porosity on fracture toughness in aging human bone: a microCT-based cohesive finite element study.
    Ural A; Vashishth D
    J Biomech Eng; 2007 Oct; 129(5):625-31. PubMed ID: 17887887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructural and compositional contributions towards the mechanical behavior of aging human bone measured by cyclic and impact reference point indentation.
    Abraham AC; Agarwalla A; Yadavalli A; Liu JY; Tang SY
    Bone; 2016 Jun; 87():37-43. PubMed ID: 27021150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale Predictors of Femoral Neck In Situ Strength in Aging Women: Contributions of BMD, Cortical Porosity, Reference Point Indentation, and Nonenzymatic Glycation.
    Abraham AC; Agarwalla A; Yadavalli A; McAndrew C; Liu JY; Tang SY
    J Bone Miner Res; 2015 Dec; 30(12):2207-14. PubMed ID: 26060094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cohesive finite element modeling of age-related toughness loss in human cortical bone.
    Ural A; Vashishth D
    J Biomech; 2006; 39(16):2974-82. PubMed ID: 16375909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A direct role of collagen glycation in bone fracture.
    Poundarik AA; Wu PC; Evis Z; Sroga GE; Ural A; Rubin M; Vashishth D
    J Mech Behav Biomed Mater; 2015 Dec; 52():120-130. PubMed ID: 26530231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age-related changes in the fracture resistance of male Fischer F344 rat bone.
    Uppuganti S; Granke M; Makowski AJ; Does MD; Nyman JS
    Bone; 2016 Feb; 83():220-232. PubMed ID: 26610688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of strain rate on fracture toughness of human cortical bone: a finite element study.
    Ural A; Zioupos P; Buchanan D; Vashishth D
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1021-32. PubMed ID: 21783112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-enzymatic glycation alters microdamage formation in human cancellous bone.
    Tang SY; Vashishth D
    Bone; 2010 Jan; 46(1):148-54. PubMed ID: 19747573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of non-enzymatic glycation on cancellous bone fragility.
    Tang SY; Zeenath U; Vashishth D
    Bone; 2007 Apr; 40(4):1144-51. PubMed ID: 17257914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prevalent role of porosity and osteonal area over mineralization heterogeneity in the fracture toughness of human cortical bone.
    Granke M; Makowski AJ; Uppuganti S; Nyman JS
    J Biomech; 2016 Sep; 49(13):2748-2755. PubMed ID: 27344202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of parathyroid hormone on cortical porosity, non-enzymatic glycation and bone tissue mechanics in rats with type 2 diabetes mellitus.
    Campbell GM; Tiwari S; Hofbauer C; Picke AK; Rauner M; Huber G; Peña JA; Damm T; Barkmann R; Morlock MM; Hofbauer LC; Glüer CC
    Bone; 2016 Jan; 82():116-21. PubMed ID: 25952971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anisotropy of age-related toughness loss in human cortical bone: a finite element study.
    Ural A; Vashishth D
    J Biomech; 2007; 40(7):1606-14. PubMed ID: 17054962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying Novel Clinical Surrogates to Assess Human Bone Fracture Toughness.
    Granke M; Makowski AJ; Uppuganti S; Does MD; Nyman JS
    J Bone Miner Res; 2015 Jul; 30(7):1290-300. PubMed ID: 25639628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of non-enzymatic glycation on the mechanical properties of cortical bone.
    Jia S; Gong H; Cen H; Shi P; Zhang R; Li Z; Bi X
    J Mech Behav Biomed Mater; 2021 Jul; 119():104553. PubMed ID: 33930651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-related properties at the microscale affect crack propagation in cortical bone.
    Gustafsson A; Wallin M; Isaksson H
    J Biomech; 2019 Oct; 95():109326. PubMed ID: 31526587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An investigation on the effects of in vitro induced advanced glycation end-products on cortical bone fracture mechanics at fall-related loading rates.
    Britton M; Parle E; Vaughan TJ
    J Mech Behav Biomed Mater; 2023 Feb; 138():105619. PubMed ID: 36525877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Vitro-Induced High Sugar Environments Deteriorate Human Cortical Bone Elastic Modulus and Fracture Toughness.
    Merlo K; Aaronson J; Vaidya R; Rezaee T; Chalivendra V; Karim L
    J Orthop Res; 2020 May; 38(5):972-983. PubMed ID: 31793028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fracture behavior of human cortical bone with high glycation content under dynamic loading.
    Maghami E; Sadighi A; Najafi AR
    J Mech Behav Biomed Mater; 2024 Jul; 155():106577. PubMed ID: 38759587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneous glycation of cancellous bone and its association with bone quality and fragility.
    Karim L; Vashishth D
    PLoS One; 2012; 7(4):e35047. PubMed ID: 22514706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.