These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 21056423)

  • 1. Microwave-assisted high-throughput acid hydrolysis in silicon carbide microtiter platforms--a rapid and low volume sample preparation technique for total amino acid analysis in proteins and peptides.
    Damm M; Holzer M; Radspieler G; Marsche G; Kappe CO
    J Chromatogr A; 2010 Dec; 1217(50):7826-32. PubMed ID: 21056423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave-assisted high-throughput derivatization techniques utilizing silicon carbide microtiter platforms.
    Damm M; Rechberger G; Kollroser M; Kappe CO
    J Chromatogr A; 2010 Jan; 1217(1):167-70. PubMed ID: 19962705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel microwave chemistry in silicon carbide microtiter platforms: a review.
    Kappe CO; Damm M
    Mol Divers; 2012 Feb; 16(1):5-25. PubMed ID: 22127640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel microwave chemistry in silicon carbide reactor platforms: an in-depth investigation into heating characteristics.
    Damm M; Kappe CO
    Mol Divers; 2009 Nov; 13(4):529-43. PubMed ID: 19548098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput microwave-assisted organic synthesis: moving from automated sequential to parallel library-generation formats in silicon carbide microtiter plates.
    Kremsner JM; Stadler A; Kappe CO
    J Comb Chem; 2007; 9(2):285-91. PubMed ID: 17348734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unraveling the mysteries of microwave chemistry using silicon carbide reactor technology.
    Kappe CO
    Acc Chem Res; 2013 Jul; 46(7):1579-87. PubMed ID: 23463987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput experimentation platform: parallel microwave chemistry in HPLC/GC vials.
    Damm M; Kappe CO
    J Comb Chem; 2009; 11(3):460-8. PubMed ID: 19275226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave-assisted forced degradation using high-throughput microtiter platforms.
    Prekodravac B; Damm M; Kappe CO
    J Pharm Biomed Anal; 2011 Dec; 56(5):867-73. PubMed ID: 21865000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high-throughput platform for low-volume high-temperature/pressure sealed vessel solvent extractions.
    Damm M; Kappe CO
    Anal Chim Acta; 2011 Nov; 707(1-2):76-83. PubMed ID: 22027122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave chemistry in silicon carbide reaction vials: separating thermal from nonthermal effects.
    Obermayer D; Gutmann B; Kappe CO
    Angew Chem Int Ed Engl; 2009; 48(44):8321-4. PubMed ID: 19784993
    [No Abstract]   [Full Text] [Related]  

  • 11. Polymeric synthesis of silicon carbide with microwaves.
    Aguilar J; Urueta L; Valdez Z
    J Microw Power Electromagn Energy; 2007; 40(3):145-54. PubMed ID: 17645205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave-assisted formation of organic monolayers from 1-alkenes on silicon carbide.
    van den Berg SA; Alonso JM; Wadhwa K; Franssen MC; Wennekes T; Zuilhof H
    Langmuir; 2014 Sep; 30(35):10562-5. PubMed ID: 25111008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid hydrolysis of proteins and peptides by means of microwave technology and its application to amino acid analysis.
    Chen ST; Chiou SH; Chu YH; Wang KT
    Int J Pept Protein Res; 1987 Oct; 30(4):572-6. PubMed ID: 3429135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Synergetic effects of silicon carbide and molecular sieve loaded catalyst on microwave assisted catalytic oxidation of toluene].
    Wang XH; Bo LL; Liu HN; Zhang H; Sun JY; Yang L; Cai LD
    Huan Jing Ke Xue; 2013 Jun; 34(6):2107-15. PubMed ID: 23947020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel microwave synthesis of 2-styrylquinazolin-4(3H)-ones in a high-throughput platform using HPLC/GC vials as reaction vessels.
    Baghbanzadeh M; Molnar M; Damm M; Reidlinger C; Dabiri M; Kappe CO
    J Comb Chem; 2009; 11(4):676-84. PubMed ID: 19432481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment and use of two silicon carbide multi-well plates for library synthesis and proteolytic digests using microwave heating.
    Stencel LM; Kormos CM; Avery KB; Leadbeater NE
    Org Biomol Chem; 2009 Jun; 7(11):2452-7. PubMed ID: 19462057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerated hydrolysis method to estimate the amino acid content of wheat (Triticum durum Desf.) flour using microwave irradiation.
    Kabaha K; Taralp A; Cakmak I; Ozturk L
    J Agric Food Chem; 2011 Apr; 59(7):2958-65. PubMed ID: 21375298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An evaluation of microwave heating for the rapid hydrolysis of peptide samples for chiral amino acid analysis.
    Péter A; Laus G; Tourwé D; Gerlo E; Van Binst G
    Pept Res; 1993; 6(1):48-52. PubMed ID: 8439736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microwave hydrolysis of peptides and proteins for amino acid analysis.
    Engelhart WG
    Am Biotechnol Lab; 1990 Nov; 8(15):30, 32, 34. PubMed ID: 1366918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput screening of Si-Ni flux for SiC solution growth using a high-temperature laser microscope observation and secondary ion mass spectroscopy depth profiling.
    Maruyama S; Onuma A; Kurashige K; Kato T; Okumura H; Matsumoto Y
    ACS Comb Sci; 2013 Jun; 15(6):287-90. PubMed ID: 23697329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.