These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 21056657)

  • 1. Interaction of metal oxide nanoparticles with lung surfactant protein A.
    Schulze C; Schaefer UF; Ruge CA; Wohlleben W; Lehr CM
    Eur J Pharm Biopharm; 2011 Apr; 77(3):376-83. PubMed ID: 21056657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dispersion characteristics of various metal oxide secondary nanoparticles in culture medium for in vitro toxicology assessment.
    Kato H; Fujita K; Horie M; Suzuki M; Nakamura A; Endoh S; Yoshida Y; Iwahashi H; Takahashi K; Kinugasa S
    Toxicol In Vitro; 2010 Apr; 24(3):1009-18. PubMed ID: 20006982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Change in agglomeration status and toxicokinetic fate of various nanoparticles in vivo following lung exposure in rats.
    Creutzenberg O; Bellmann B; Korolewitz R; Koch W; Mangelsdorf I; Tillmann T; Schaudien D
    Inhal Toxicol; 2012 Oct; 24(12):821-30. PubMed ID: 23033995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential plasma protein binding to metal oxide nanoparticles.
    Deng ZJ; Mortimer G; Schiller T; Musumeci A; Martin D; Minchin RF
    Nanotechnology; 2009 Nov; 20(45):455101. PubMed ID: 19822937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulmonary toxicity and fate of agglomerated 10 and 40 nm aluminum oxyhydroxides following 4-week inhalation exposure of rats: toxic effects are determined by agglomerated, not primary particle size.
    Pauluhn J
    Toxicol Sci; 2009 May; 109(1):152-67. PubMed ID: 19251949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles.
    Sayes CM; Reed KL; Warheit DB
    Toxicol Sci; 2007 May; 97(1):163-80. PubMed ID: 17301066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of nanoparticles with the pulmonary surfactant system.
    Schleh C; Hohlfeld JM
    Inhal Toxicol; 2009 Jul; 21 Suppl 1():97-103. PubMed ID: 19558240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association of the physical and chemical properties and the cytotoxicity of metal oxide nanoparticles: metal ion release, adsorption ability and specific surface area.
    Horie M; Fujita K; Kato H; Endoh S; Nishio K; Komaba LK; Nakamura A; Miyauchi A; Kinugasa S; Hagihara Y; Niki E; Yoshida Y; Iwahashi H
    Metallomics; 2012 Apr; 4(4):350-60. PubMed ID: 22419205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and biochemical characterization of pulmonary surfactant protein A of horses.
    Hobo S; Ogasawara Y; Kuroki Y; Akino T; Yoshihara T
    Am J Vet Res; 1999 Feb; 60(2):169-73. PubMed ID: 10048546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale and fine zinc oxide particles: can in vitro assays accurately forecast lung hazards following inhalation exposures?
    Warheit DB; Sayes CM; Reed KL
    Environ Sci Technol; 2009 Oct; 43(20):7939-45. PubMed ID: 19921917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pneumocystis carinii pneumonia alters expression and distribution of lung collectins SP-A and SP-D.
    Atochina EN; Beck JM; Scanlon ST; Preston AM; Beers MF
    J Lab Clin Med; 2001 Jun; 137(6):429-39. PubMed ID: 11385364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hardening of the nanoparticle-protein corona in metal (Au, Ag) and oxide (Fe3O4, CoO, and CeO2) nanoparticles.
    Casals E; Pfaller T; Duschl A; Oostingh GJ; Puntes VF
    Small; 2011 Dec; 7(24):3479-86. PubMed ID: 22058075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of calcium hydroxyapatite nanoparticles using microreactor and their characteristics of protein adsorption.
    Kandori K; Kuroda T; Togashi S; Katayama E
    J Phys Chem B; 2011 Feb; 115(4):653-9. PubMed ID: 21162543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of metal nanoparticle agglomeration, uptake, and interaction using high-illuminating system.
    Skebo JE; Grabinski CM; Schrand AM; Schlager JJ; Hussain SM
    Int J Toxicol; 2007; 26(2):135-41. PubMed ID: 17454253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of agglomeration and specific lung lining lipid/protein interaction on short-term inhalation toxicity.
    Wohlleben W; Driessen MD; Raesch S; Schaefer UF; Schulze C; Vacano Bv; Vennemann A; Wiemann M; Ruge CA; Platsch H; Mues S; Ossig R; Tomm JM; Schnekenburger J; Kuhlbusch TA; Luch A; Lehr CM; Haase A
    Nanotoxicology; 2016 Sep; 10(7):970-80. PubMed ID: 26984182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of F(2)-isoprostane isomers in cultured human lung epithelial cells after silica oxide and metal oxide nanoparticle treatment by liquid chromatography/tandem mass spectrometry.
    Liu X; Whitefield PD; Ma Y
    Talanta; 2010 Jun; 81(4-5):1599-606. PubMed ID: 20441945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing fate and effects of three particles of different surface properties: nano-TiO(2), pigmentary TiO(2) and quartz.
    van Ravenzwaay B; Landsiedel R; Fabian E; Burkhardt S; Strauss V; Ma-Hock L
    Toxicol Lett; 2009 May; 186(3):152-9. PubMed ID: 19114093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Original Research: Evaluation of pulmonary response to inhaled tungsten (IV) oxide nanoparticles in golden Syrian hamsters.
    Prajapati MV; Adebolu OO; Morrow BM; Cerreta JM
    Exp Biol Med (Maywood); 2017 Jan; 242(1):29-44. PubMed ID: 27534980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased surfactant protein a and d expression in acute ovalbumin-induced allergic airway inflammation in brown norway rats.
    Schmiedl A; Lührmann A; Pabst R; Koslowski R
    Int Arch Allergy Immunol; 2009; 148(2):118-26. PubMed ID: 18802356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of surfactant protein D from human respiratory secretions by carbon nanotubes and polystyrene nanoparticles depends on nanomaterial surface modification and size.
    Marchetti M; Shaffer MS; Zambianchi M; Chen S; Superti F; Schwander S; Gow A; Zhang JJ; Chung KF; Ryan MP; Porter AE; Tetley TD
    Philos Trans R Soc Lond B Biol Sci; 2015 Feb; 370(1661):20140038. PubMed ID: 25533095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.