These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 2105744)

  • 41. Excitation trap approach to analyze size and pigment-pigment coupling: reconstitution of LH1 antenna of Rhodobacter sphaeroides with Ni-substituted bacteriochlorophyll.
    Fiedor L; Leupold D; Teuchner K; Voigt B; Hunter CN; Scherz A; Scheer H
    Biochemistry; 2001 Mar; 40(12):3737-47. PubMed ID: 11297443
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Methionine oxidation and its effect on the stability of a reconstituted subunit of the light-harvesting complex from Rhodospirillum rubrum.
    Wang ZY; Shimonaga M; Muraoka Y; Kobayashi M; Nozawa T
    Eur J Biochem; 2001 Jun; 268(12):3375-82. PubMed ID: 11422366
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Formation of a Subunit Form of the Core Light-Harvesting Complex from Sulfur Purple Bacteria Ectothiorhodospira haloalkaliphila with Different Carotenoid Composition.
    Solov'ev AA; Ashikhmin AA; Moskalenko AA
    Mikrobiologiia; 2016 Sep; 85(5):497-505. PubMed ID: 29364597
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reconstitution of core light-harvesting complexes of photosynthetic bacteria using chemically synthesized polypeptides. 1. Minimal requirements for subunit formation.
    Meadows KA; Parkes-Loach PS; Kehoe JW; Loach PA
    Biochemistry; 1998 Mar; 37(10):3411-7. PubMed ID: 9521662
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Solution structures of the core light-harvesting alpha and beta polypeptides from Rhodospirillum rubrum: implications for the pigment-protein and protein-protein interactions.
    Wang ZY; Gokan K; Kobayashi M; Nozawa T
    J Mol Biol; 2005 Mar; 347(2):465-77. PubMed ID: 15740753
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Unexpected similarities of the B800-850 light-harvesting complex from Rhodospirillum molischianum to the B870 light-harvesting complexes from other purple photosynthetic bacteria.
    Germeroth L; Lottspeich F; Robert B; Michel H
    Biochemistry; 1993 Jun; 32(21):5615-21. PubMed ID: 8504081
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Circular symmetry of the light-harvesting 1 complex from Rhodospirillum rubrum is not perturbed by interaction with the reaction center.
    Gerken U; Lupo D; Tietz C; Wrachtrup J; Ghosh R
    Biochemistry; 2003 Sep; 42(35):10354-60. PubMed ID: 12950162
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bacteriochlorophyll-protein complexes from the light-harvesting antenna of photosynthetic bacteria.
    Sauer K; Austin LA
    Biochemistry; 1978 May; 17(10):2011-9. PubMed ID: 418797
    [No Abstract]   [Full Text] [Related]  

  • 49. The early formation of the photosynthetic apparatus in Rhodospirillum rubrum.
    Oelze J; Pahike W
    Arch Microbiol; 1976 Jul; 108(3):281-5. PubMed ID: 182100
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Probing binding site of bacteriochlorophyll a and carotenoid in the reconstituted LH1 complex from Rhodospirillum rubrum S1 by Stark spectroscopy.
    Nakagawa K; Suzuki S; Fujii R; Gardiner AT; Cogdell RJ; Nango M; Hashimoto H
    Photosynth Res; 2008; 95(2-3):339-44. PubMed ID: 17912603
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A specific carotenoid is required for reconstitution of the Rubrivivax gelatinosus B875 light harvesting complex from its subunit form B820.
    Jirsakova V; Reiss-Husson F
    FEBS Lett; 1994 Oct; 353(2):151-4. PubMed ID: 7926041
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of pressure on the bacteriochlorophyll a binding sites of the core antenna complex from Rhodospirillum rubrum.
    Sturgis JN; Gall A; Ellervee A; Freiberg A; Robert B
    Biochemistry; 1998 Oct; 37(42):14875-80. PubMed ID: 9778363
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reconstitution of a functional photosynthetic receptor complex with isolated subunits of core light-harvesting complex and reaction centers.
    Bustamante PL; Loach PA
    Biochemistry; 1994 Nov; 33(45):13329-39. PubMed ID: 7947741
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Carotenoid-induced cooperative formation of bacterial photosynthetic LH1 complex.
    Fiedor L; Akahane J; Koyama Y
    Biochemistry; 2004 Dec; 43(51):16487-96. PubMed ID: 15610043
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A structural role of the carotenoid in the light-harvesting II protein of Rhodobacter capsulatus.
    Zurdo J; Fernandez-Cabrera C; Ramirez JM
    Biochem J; 1993 Mar; 290 ( Pt 2)(Pt 2):531-7. PubMed ID: 8452543
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Generation of triplet and cation-radical bacteriochlorophyll a in carotenoidless LH1 and LH2 antenna complexes from Rhodobacter sphaeroides.
    Limantara L; Fujii R; Zhang JP; Kakuno T; Hara H; Kawamori A; Yagura T; Cogdell RJ; Koyama Y
    Biochemistry; 1998 Dec; 37(50):17469-86. PubMed ID: 9860862
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hydrogen bonding and circular dichroism of bacteriochlorophylls in the Rhodobacter capsulatus light-harvesting 2 complex altered by combinatorial mutagenesis.
    Hu Q; Sturgis JN; Robert B; Delagrave S; Youvan DC; Niederman RA
    Biochemistry; 1998 Jul; 37(28):10006-15. PubMed ID: 9665706
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Naturally zinc-containing bacteriochlorophyll a ([Zn]-BChl a) protects the photosynthetic apparatus of Acidiphilium rubrum from copper toxicity damage.
    Jaime-Pérez N; Bína D; Kaftan D; Bokhari SNH; Küpper H
    Biochim Biophys Acta Bioenerg; 2021 Oct; 1862(10):148472. PubMed ID: 34217700
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of the different peripheral light-harvesting complexes from high- and low-light grown cells from Rhodopseudomonas palustris.
    Gall A; Robert B
    Biochemistry; 1999 Apr; 38(16):5185-90. PubMed ID: 10213625
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Excitation energy trapping and dissipation by Ni-substituted bacteriochlorophyll a in reconstituted LH1 complexes from Rhodospirillum rubrum.
    Lambrev PH; Miloslavina Y; van Stokkum IH; Stahl AD; Michalik M; Susz A; Tworzydło J; Fiedor J; Huhn G; Groot ML; van Grondelle R; Garab G; Fiedor L
    J Phys Chem B; 2013 Sep; 117(38):11260-71. PubMed ID: 23837465
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.