These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21057663)

  • 1. Fluxes of non-interacting and strongly repelling particles through a single conical channel: Analytical results and their numerical tests.
    Berezhkovskii AM; Pustovoit MA; Bezrukov SM
    Chem Phys; 2010 Oct; 375(2-3):523-528. PubMed ID: 21057663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entropic effects in channel-facilitated transport: interparticle interactions break the flux symmetry.
    Berezhkovskii AM; Pustovoit MA; Bezrukov SM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):020904. PubMed ID: 19792070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linear response approach to active Brownian particles in time-varying activity fields.
    Merlitz H; Vuijk HD; Brader J; Sharma A; Sommer JU
    J Chem Phys; 2018 May; 148(19):194116. PubMed ID: 30307220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of stochastic gating on channel-facilitated transport of non-interacting and strongly repelling solutes.
    Berezhkovskii AM; Bezrukov SM
    J Chem Phys; 2017 Aug; 147(8):084109. PubMed ID: 28863525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entropic particle transport in periodic channels.
    Burada PS; Schmid G; Talkner P; Hänggi P; Reguera D; Rubí JM
    Biosystems; 2008; 93(1-2):16-22. PubMed ID: 18462863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brownian simulations and unidirectional flux in diffusion.
    Singer A; Schuss Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026115. PubMed ID: 15783386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-passage times in conical varying-width channels biased by a transverse gravitational force: Comparison of analytical and numerical results.
    Pompa-García I; Castilla R; Metzler R; Dagdug L
    Phys Rev E; 2022 Dec; 106(6-1):064137. PubMed ID: 36671151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First passage, looping, and direct transition in expanding and narrowing tubes: Effects of the entropy potential.
    Berezhkovskii AM; Dagdug L; Bezrukov SM
    J Chem Phys; 2017 Oct; 147(13):134104. PubMed ID: 28987083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brownian transport of finite size particles in a periodic channel coexisting with an energetic potential.
    Chen Q; Ai BQ; Xiong JW
    Chaos; 2014 Sep; 24(3):033119. PubMed ID: 25273199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fick-Jacobs description and first passage dynamics for diffusion in a channel under stochastic resetting.
    Jain S; Boyer D; Pal A; Dagdug L
    J Chem Phys; 2023 Feb; 158(5):054113. PubMed ID: 36754825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entropic transport of finite size particles.
    Riefler W; Schmid G; Burada PS; Hänggi P
    J Phys Condens Matter; 2010 Nov; 22(45):454109. PubMed ID: 21339597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffusion in periodic two-dimensional channels formed by overlapping circles: comparison of analytical and numerical results.
    Pineda I; Vazquez MV; Berezhkovskii AM; Dagdug L
    J Chem Phys; 2011 Dec; 135(22):224101. PubMed ID: 22168674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective diffusivity of a Brownian particle in a two-dimensional periodic channel of abruptly alternating width.
    Dagdug L; Berezhkovskii AM; Zitserman VY; Bezrukov SM
    Phys Rev E; 2021 Jun; 103(6-1):062106. PubMed ID: 34271681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relaxation and fluctuations of the number of particles in a membrane channel at arbitrary particle-channel interaction.
    Zitserman VY; Berezhkovskii AM; Pustovoit MA; Bezrukov SM
    J Chem Phys; 2008 Sep; 129(9):095101. PubMed ID: 19044889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusion in two-dimensional conical varying width channels: comparison of analytical and numerical results.
    Pineda I; Alvarez-Ramirez J; Dagdug L
    J Chem Phys; 2012 Nov; 137(17):174103. PubMed ID: 23145713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical treatment of biased diffusion in tubes with periodic dead ends.
    Berezhkovskii AM; Dagdug L
    J Chem Phys; 2011 Mar; 134(12):124109. PubMed ID: 21456647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Counting translocations of strongly repelling particles through single channels: fluctuation theorem for membrane transport.
    Berezhkovskii AM; Bezrukov SM
    Phys Rev Lett; 2008 Jan; 100(3):038104. PubMed ID: 18233042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational simulations of asymmetric fluxes of large molecules through gap junction channel pores.
    Mondal A; Appadurai DA; Akoum NW; Sachse FB; Moreno AP
    J Theor Biol; 2017 Jan; 412():61-73. PubMed ID: 27590324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active microrheology in corrugated channels.
    Puertas AM; Malgaretti P; Pagonabarraga I
    J Chem Phys; 2018 Nov; 149(17):174908. PubMed ID: 30408983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of finite size particles in confined narrow channels: diffusion, coherence, and particle separation.
    Ai BQ; Wu JC
    J Chem Phys; 2013 Jul; 139(3):034114. PubMed ID: 23883017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.