These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21057663)

  • 21. Evaluating diffusion resistance of a constriction in a membrane channel by the method of boundary homogenization.
    Skvortsov AT; Dagdug L; Berezhkovskii AM; MacGillivray IR; Bezrukov SM
    Phys Rev E; 2021 Jan; 103(1-1):012408. PubMed ID: 33601596
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controlling the motion of interacting particles: homogeneous systems and binary mixtures.
    Savel'ev S; Nori F
    Chaos; 2005 Jun; 15(2):26112. PubMed ID: 16035914
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Steering the potential barriers: entropic to energetic.
    Burada PS; Schmid G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051128. PubMed ID: 21230458
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Survival of interacting Brownian particles in crowded one-dimensional environment.
    Ryabov A; Chvosta P
    J Chem Phys; 2012 Feb; 136(6):064114. PubMed ID: 22360176
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stochastic transport of interacting particles in periodically driven ratchets.
    Savel'ev S; Marchesoni F; Nori F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061107. PubMed ID: 15697341
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pattern formation with repulsive soft-core interactions: Discrete particle dynamics and Dean-Kawasaki equation.
    Delfau JB; Ollivier H; López C; Blasius B; Hernández-García E
    Phys Rev E; 2016 Oct; 94(4-1):042120. PubMed ID: 27841471
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diffusion of interacting particles in a channel with reflection boundary conditions.
    Khatri N; Burada PS
    J Chem Phys; 2019 Sep; 151(9):094103. PubMed ID: 31492065
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transport of active particles in an open-wedge channel.
    Caprini L; Cecconi F; Marini Bettolo Marconi U
    J Chem Phys; 2019 Apr; 150(14):144903. PubMed ID: 30981222
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fixed-density boundary conditions in overdamped Langevin simulations of diffusion in channels.
    Ramírez-Piscina L
    Phys Rev E; 2018 Jul; 98(1-1):013302. PubMed ID: 30110749
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ratchet effect for two-dimensional nanoparticle motion in a corrugated oscillating channel.
    Radtke M; Netz RR
    Eur Phys J E Soft Matter; 2016 Nov; 39(11):116. PubMed ID: 27896498
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stochastic resetting of active Brownian particles with Lorentz force.
    Abdoli I; Sharma A
    Soft Matter; 2021 Feb; 17(5):1307-1316. PubMed ID: 33313625
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diffusion of interacting particles in discrete geometries: Equilibrium and dynamical properties.
    Becker T; Nelissen K; Cleuren B; Partoens B; Van den Broeck C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052139. PubMed ID: 25493771
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Memoryless control of boundary concentrations of diffusing particles.
    Singer A; Schuss Z; Nadler B; Eisenberg RS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061106. PubMed ID: 15697340
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Model for a Brownian ratchet with improved characteristics for particle separation.
    Grimm A; Stark H; van der Maarel JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061102. PubMed ID: 19658468
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Landauer's blow-torch effect in systems with entropic potential.
    Das M; Ray DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052133. PubMed ID: 26651672
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Entropic particle transport: higher-order corrections to the Fick-Jacobs diffusion equation.
    Martens S; Schmid G; Schimansky-Geier L; Hänggi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051135. PubMed ID: 21728518
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transport of interacting particles in a chain of cavities: description through a modified Fick-Jacobs equation.
    Suárez GP; Hoyuelos M; Mártin HO
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012135. PubMed ID: 25679598
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of Particle Focusing in Resistive-Pulse Technique: Direction-Dependent Velocity in Micropores.
    Qiu Y; Vlassiouk I; Hinkle P; Toimil-Molares ME; Levine AJ; Siwy ZS
    ACS Nano; 2016 Mar; 10(3):3509-17. PubMed ID: 26901283
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of particle size oscillations on drift and diffusion along a periodically corrugated channel.
    Makhnovskii YA
    Phys Rev E; 2019 Mar; 99(3-1):032102. PubMed ID: 30999518
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of Asymmetric Flux in Heterotypic Gap Junctions by Pore Shape, Particle Size and Charge.
    Mondal A; Sachse FB; Moreno AP
    Front Physiol; 2017; 8():206. PubMed ID: 28428758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.