BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 21057689)

  • 21. Thermoplastic microfluidic platform for single-molecule detection, cell culture, and actuation.
    Melin J; Johansson H; Söderberg O; Nikolajeff F; Landegren U; Nilsson M; Jarvius J
    Anal Chem; 2005 Nov; 77(22):7122-30. PubMed ID: 16285657
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiphoton writing of three-dimensional fluidic channels within a porous matrix.
    Lee JT; George MC; Moore JS; Braun PV
    J Am Chem Soc; 2009 Aug; 131(32):11294-5. PubMed ID: 19637870
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrodynamic shearing of DNA in a polymeric microfluidic device.
    Nesterova IV; Hupert ML; Witek MA; Soper SA
    Lab Chip; 2012 Mar; 12(6):1044-7. PubMed ID: 22314498
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An integrated optics microfluidic device for detecting single DNA molecules.
    Krogmeier JR; Schaefer I; Seward G; Yantz GR; Larson JW
    Lab Chip; 2007 Dec; 7(12):1767-74. PubMed ID: 18030399
    [TBL] [Abstract][Full Text] [Related]  

  • 25. All-silica nanofluidic devices for DNA-analysis fabricated by imprint of sol-gel silica with silicon stamp.
    Mikkelsen MB; Letailleur AA; Søndergård E; Barthel E; Teisseire J; Marie R; Kristensen A
    Lab Chip; 2012 Jan; 12(2):262-7. PubMed ID: 22081085
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A simple polysilsesquioxane sealing of nanofluidic channels below 10 nm at room temperature.
    Gu J; Gupta R; Chou CF; Wei Q; Zenhausern F
    Lab Chip; 2007 Sep; 7(9):1198-201. PubMed ID: 17713620
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A single-molecule barcoding system using nanoslits for DNA analysis : nanocoding.
    Jo K; Schramm TM; Schwartz DC
    Methods Mol Biol; 2009; 544():29-42. PubMed ID: 19488691
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vertical arrays of nanofluidic channels fabricated without nanolithography.
    Sordan R; Miranda A; Traversi F; Colombo D; Chrastina D; Isella G; Masserini M; Miglio L; Kern K; Balasubramanian K
    Lab Chip; 2009 Jun; 9(11):1556-60. PubMed ID: 19458862
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules.
    Wang C; Nam SW; Cotte JM; Jahnes CV; Colgan EG; Bruce RL; Brink M; Lofaro MF; Patel JV; Gignac LM; Joseph EA; Rao SP; Stolovitzky G; Polonsky S; Lin Q
    Nat Commun; 2017 Jan; 8():14243. PubMed ID: 28112157
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical and chemical analysis of plasma and ultraviolet-ozone surface treatments for thermal bonding of polymeric microfluidic devices.
    Bhattacharyya A; Klapperich CM
    Lab Chip; 2007 Jul; 7(7):876-82. PubMed ID: 17594007
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Facile fabrication of microfluidic systems using electron beam lithography.
    Mali P; Sarkar A; Lal R
    Lab Chip; 2006 Feb; 6(2):310-5. PubMed ID: 16450043
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication of polymer microfluidic systems by hot embossing and laser ablation.
    Locascio LE; Ross DJ; Howell PB; Gaitan M
    Methods Mol Biol; 2006; 339():37-46. PubMed ID: 16790865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Weak solvent based chip lamination and characterization of on-chip valve and pump.
    Zhou P; Young L; Chen Z
    Biomed Microdevices; 2010 Oct; 12(5):821-32. PubMed ID: 20526680
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low-temperature direct bonding of glass nanofluidic chips using a two-step plasma surface activation process.
    Xu Y; Wang C; Dong Y; Li L; Jang K; Mawatari K; Suga T; Kitamori T
    Anal Bioanal Chem; 2012 Jan; 402(3):1011-8. PubMed ID: 22134493
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application.
    Chung KH; Hong JW; Lee DS; Yoon HC
    Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analytical performance of polymer-based microfluidic devices fabricated by computer numerical controlled machining.
    Mecomber JS; Stalcup AM; Hurd D; Halsall HB; Heineman WR; Seliskar CJ; Wehmeyer KR; Limbach PA
    Anal Chem; 2006 Feb; 78(3):936-41. PubMed ID: 16448071
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanofluidic single-molecule sorting of DNA: a new concept in separation and analysis of biomolecules towards ultimate level performance.
    Yamamoto T; Fujii T
    Nanotechnology; 2010 Oct; 21(39):395502. PubMed ID: 20808035
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Statics and dynamics of single DNA molecules confined in nanochannels.
    Reisner W; Morton KJ; Riehn R; Wang YM; Yu Z; Rosen M; Sturm JC; Chou SY; Frey E; Austin RH
    Phys Rev Lett; 2005 May; 94(19):196101. PubMed ID: 16090189
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low cost and manufacturable complete microTAS for detecting bacteria.
    Sauer-Budge AF; Mirer P; Chatterjee A; Klapperich CM; Chargin D; Sharon A
    Lab Chip; 2009 Oct; 9(19):2803-10. PubMed ID: 19967117
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Soft Lithography, Molding, and Micromachining Techniques for Polymer Micro Devices.
    Sen AK; Raj A; Banerjee U; Iqbal SR
    Methods Mol Biol; 2019; 1906():13-54. PubMed ID: 30488383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.