These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
401 related articles for article (PubMed ID: 21057944)
1. Molecular- and cultivation-based analyses of microbial communities in oil field water and in microcosms amended with nitrate to control H2S production. Kumaraswamy R; Ebert S; Gray MR; Fedorak PM; Foght JM Appl Microbiol Biotechnol; 2011 Mar; 89(6):2027-38. PubMed ID: 21057944 [TBL] [Abstract][Full Text] [Related]
2. Planktonic nitrate-reducing bacteria and sulfate-reducing bacteria in some western Canadian oil field waters. Eckford RE; Fedorak PM J Ind Microbiol Biotechnol; 2002 Aug; 29(2):83-92. PubMed ID: 12161775 [TBL] [Abstract][Full Text] [Related]
3. Chemical and microbiological changes in laboratory incubations of nitrate amendment "sour" produced waters from three western Canadian oil fields. Eckford RE; Fedorak PM J Ind Microbiol Biotechnol; 2002 Nov; 29(5):243-54. PubMed ID: 12407458 [TBL] [Abstract][Full Text] [Related]
4. Identification of rice root associated nitrate, sulfate and ferric iron reducing bacteria during root decomposition. Scheid D; Stubner S; Conrad R FEMS Microbiol Ecol; 2004 Nov; 50(2):101-10. PubMed ID: 19712368 [TBL] [Abstract][Full Text] [Related]
5. Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis. Gittel A; Mussmann M; Sass H; Cypionka H; Könneke M Environ Microbiol; 2008 Oct; 10(10):2645-58. PubMed ID: 18627412 [TBL] [Abstract][Full Text] [Related]
6. Ammonium concentrations in produced waters from a mesothermic oil field subjected to nitrate injection decrease through formation of denitrifying biomass and anammox activity. Shartau SL; Yurkiw M; Lin S; Grigoryan AA; Lambo A; Park HS; Lomans BP; van der Biezen E; Jetten MS; Voordouw G Appl Environ Microbiol; 2010 Aug; 76(15):4977-87. PubMed ID: 20562276 [TBL] [Abstract][Full Text] [Related]
7. Microbial response to reinjection of produced water in an oil reservoir. Lysnes K; Bødtker G; Torsvik T; Bjørnestad EO; Sunde E Appl Microbiol Biotechnol; 2009 Jul; 83(6):1143-57. PubMed ID: 19430774 [TBL] [Abstract][Full Text] [Related]
8. Bacterial communities in a crude oil gathering and transferring system (China). Liu YJ; Chen YP; Jin PK; Wang XC Anaerobe; 2009 Oct; 15(5):214-8. PubMed ID: 19351561 [TBL] [Abstract][Full Text] [Related]
9. Diversity of culturable sulfidogenic bacteria in two oil-water separation tanks in the north-eastern oil fields of India. Agrawal A; Vanbroekhoven K; Lal B Anaerobe; 2010 Feb; 16(1):12-8. PubMed ID: 19427389 [TBL] [Abstract][Full Text] [Related]
10. Characterisation of culture-independent and -dependent microbial communities in a high-temperature offshore chalk petroleum reservoir. Kaster KM; Bonaunet K; Berland H; Kjeilen-Eilertsen G; Brakstad OG Antonie Van Leeuwenhoek; 2009 Nov; 96(4):423-39. PubMed ID: 19533408 [TBL] [Abstract][Full Text] [Related]
11. Succession of Deferribacteres and Epsilonproteobacteria through a nitrate-treated high-temperature oil production facility. Gittel A; Kofoed MV; Sørensen KB; Ingvorsen K; Schramm A Syst Appl Microbiol; 2012 May; 35(3):165-74. PubMed ID: 22381470 [TBL] [Abstract][Full Text] [Related]
12. Applying a most probable number method for enumerating planktonic, dissimilatory, ammonium-producing, nitrate-reducing bacteria in oil field waters. Eckford RE; Fedorak PM Can J Microbiol; 2005 Aug; 51(8):725-9. PubMed ID: 16234872 [TBL] [Abstract][Full Text] [Related]
13. Linking phylogenetic and functional diversity to nutrient spiraling in microbial mats from Lower Kane Cave (USA). Engel AS; Meisinger DB; Porter ML; Payn RA; Schmid M; Stern LA; Schleifer KH; Lee NM ISME J; 2010 Jan; 4(1):98-110. PubMed ID: 19675595 [TBL] [Abstract][Full Text] [Related]
14. Bacterial diversity in water injection systems of Brazilian offshore oil platforms. Korenblum E; Valoni E; Penna M; Seldin L Appl Microbiol Biotechnol; 2010 Jan; 85(3):791-800. PubMed ID: 19830416 [TBL] [Abstract][Full Text] [Related]
15. Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current. Santoro AE; Casciotti KL; Francis CA Environ Microbiol; 2010 Jul; 12(7):1989-2006. PubMed ID: 20345944 [TBL] [Abstract][Full Text] [Related]
16. Functional diversity of bacteria in a ferruginous hydrothermal sediment. Handley KM; Boothman C; Mills RA; Pancost RD; Lloyd JR ISME J; 2010 Sep; 4(9):1193-205. PubMed ID: 20410934 [TBL] [Abstract][Full Text] [Related]
17. Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Rømø Basin, Wadden Sea. Musat N; Werner U; Knittel K; Kolb S; Dodenhof T; van Beusekom JE; de Beer D; Dubilier N; Amann R Syst Appl Microbiol; 2006 Jun; 29(4):333-48. PubMed ID: 16431068 [TBL] [Abstract][Full Text] [Related]
18. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Nicol GW; Leininger S; Schleper C; Prosser JI Environ Microbiol; 2008 Nov; 10(11):2966-78. PubMed ID: 18707610 [TBL] [Abstract][Full Text] [Related]
19. Competitive oxidation of volatile fatty acids by sulfate- and nitrate-reducing bacteria from an oil field in Argentina. Grigoryan AA; Cornish SL; Buziak B; Lin S; Cavallaro A; Arensdorf JJ; Voordouw G Appl Environ Microbiol; 2008 Jul; 74(14):4324-35. PubMed ID: 18502934 [TBL] [Abstract][Full Text] [Related]
20. Simple organic electron donors support diverse sulfate-reducing communities in fluidized-bed reactors treating acidic metal- and sulfate-containing wastewater. Kaksonen AH; Plumb JJ; Franzmann PD; Puhakka JA FEMS Microbiol Ecol; 2004 Mar; 47(3):279-89. PubMed ID: 19712316 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]