These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 21058269)
61. The characterization of paclitaxel-loaded microspheres manufactured from blends of poly(lactic-co-glycolic acid) (PLGA) and low molecular weight diblock copolymers. Jackson JK; Hung T; Letchford K; Burt HM Int J Pharm; 2007 Sep; 342(1-2):6-17. PubMed ID: 17555895 [TBL] [Abstract][Full Text] [Related]
62. POE/PLGA composite microspheres: formation and in vitro behavior of double walled microspheres. Yang YY; Shi M; Goh SH; Moochhala SM; Ng S; Heller J J Control Release; 2003 Mar; 88(2):201-13. PubMed ID: 12628328 [TBL] [Abstract][Full Text] [Related]
63. Brush-like branched biodegradable polyesters, part III. Protein release from microspheres of poly(vinyl alcohol)-graft-poly(D,L-lactic-co-glycolic acid). Frauke Pistel K; Breitenbach A; Zange-Volland R; Kissel T J Control Release; 2001 May; 73(1):7-20. PubMed ID: 11337055 [TBL] [Abstract][Full Text] [Related]
64. Release of PLGA-encapsulated dexamethasone from microsphere loaded porous surfaces. Dawes GJ; Fratila-Apachitei LE; Necula BS; Apachitei I; Witkamp GJ; Duszczyk J J Mater Sci Mater Med; 2010 Jan; 21(1):215-21. PubMed ID: 19669866 [TBL] [Abstract][Full Text] [Related]
65. Effects of hesperidin loaded poly(lactic-co-glycolic acid) scaffolds on growth behavior of costal cartilage cells in vitro and in vivo. Cho SA; Cha SR; Park SM; Kim KH; Lee HG; Kim EY; Lee D; Khang G J Biomater Sci Polym Ed; 2014; 25(6):625-40. PubMed ID: 24588773 [TBL] [Abstract][Full Text] [Related]
66. A protein/antibiotic releasing poly(lactic-co-glycolic acid)/lecithin scaffold for bone repair applications. Shi X; Wang Y; Ren L; Huang W; Wang DA Int J Pharm; 2009 May; 373(1-2):85-92. PubMed ID: 19429292 [TBL] [Abstract][Full Text] [Related]
67. Influence of the microencapsulation method and peptide loading on poly(lactic acid) and poly(lactic-co-glycolic acid) degradation during in vitro testing. Witschi C; Doelker E J Control Release; 1998 Feb; 51(2-3):327-41. PubMed ID: 9685930 [TBL] [Abstract][Full Text] [Related]
68. Antimicrobial Activity of 3D-Printed Poly(ε-Caprolactone) (PCL) Composite Scaffolds Presenting Vancomycin-Loaded Polylactic Acid-Glycolic Acid (PLGA) Microspheres. Zhou Z; Yao Q; Li L; Zhang X; Wei B; Yuan L; Wang L Med Sci Monit; 2018 Sep; 24():6934-6945. PubMed ID: 30269152 [TBL] [Abstract][Full Text] [Related]
69. Influence of random and oriented electrospun fibrous poly(lactic-co-glycolic acid) scaffolds on neural differentiation of mouse embryonic stem cells. Sperling LE; Reis KP; Pozzobon LG; Girardi CS; Pranke P J Biomed Mater Res A; 2017 May; 105(5):1333-1345. PubMed ID: 28120428 [TBL] [Abstract][Full Text] [Related]
70. Surface modification of PLGA microspheres. Müller M; Vörös J; Csúcs G; Walter E; Danuser G; Merkle HP; Spencer ND; Textor M J Biomed Mater Res A; 2003 Jul; 66(1):55-61. PubMed ID: 12833431 [TBL] [Abstract][Full Text] [Related]
71. Investigation of Human Dental Pulp Cells on a Potential Injectable Poly(lactic-co-glycolic acid) Microsphere Scaffold. Zou H; Wang G; Song F; Shi X J Endod; 2017 May; 43(5):745-750. PubMed ID: 28292602 [TBL] [Abstract][Full Text] [Related]
72. Hyaluronic acid/poly(lactic-co-glycolic acid) core/shell fiber meshes loaded with epigallocatechin-3-O-gallate as skin tissue engineering scaffolds. Lee EJ; Lee JH; Jin L; Jin OS; Shin YC; Sang JO; Lee J; Hyon SH; Han DW J Nanosci Nanotechnol; 2014 Nov; 14(11):8458-63. PubMed ID: 25958546 [TBL] [Abstract][Full Text] [Related]
73. SOX9 gene plus heparinized TGF-β 3 coated dexamethasone loaded PLGA microspheres for inducement of chondrogenesis of hMSCs. Park JS; Yang HN; Woo DG; Jeon SY; Park KH Biomaterials; 2012 Oct; 33(29):7151-63. PubMed ID: 22795539 [TBL] [Abstract][Full Text] [Related]
74. Forced expression of the motor neuron determinant HB9 in neural stem cells affects neurogenesis. Bréjot T; Blanchard S; Hocquemiller M; Haase G; Liu S; Nosjean A; Heard JM; Bohl D Exp Neurol; 2006 Mar; 198(1):167-82. PubMed ID: 16434037 [TBL] [Abstract][Full Text] [Related]
75. Effects of formulation parameters on encapsulation efficiency and release behavior of thienorphine loaded PLGA microspheres. Yang Y; Gao Y; Mei X Pharm Dev Technol; 2013; 18(5):1169-74. PubMed ID: 21967467 [TBL] [Abstract][Full Text] [Related]
76. Preparation and characterization of melittin-loaded poly (DL-lactic acid) or poly (DL-lactic-co-glycolic acid) microspheres made by the double emulsion method. Cui F; Cun D; Tao A; Yang M; Shi K; Zhao M; Guan Y J Control Release; 2005 Oct; 107(2):310-9. PubMed ID: 16255081 [TBL] [Abstract][Full Text] [Related]
77. Development and characterization of GRGDSPC-modified poly(lactide-co-glycolide acid) porous microspheres incorporated with protein-loaded chitosan microspheres for bone tissue engineering. Tao C; Huang J; Lu Y; Zou H; He X; Chen Y; Zhong Y Colloids Surf B Biointerfaces; 2014 Oct; 122():439-446. PubMed ID: 25074502 [TBL] [Abstract][Full Text] [Related]
78. Fabrication and evaluation of a sustained-release chitosan-based scaffold embedded with PLGA microspheres. Song K; Liu Y; Macedo HM; Jiang L; Li C; Mei G; Liu T Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1506-13. PubMed ID: 23827602 [TBL] [Abstract][Full Text] [Related]
79. A new delivery system for antisense therapy: PLGA microspheres encapsulating oligonucleotide/polyethyleneimine solid complexes. De Rosa G; Bochot A; Quaglia F; Besnard M; Fattal E Int J Pharm; 2003 Mar; 254(1):89-93. PubMed ID: 12615416 [TBL] [Abstract][Full Text] [Related]
80. MAPs/bFGF-PLGA microsphere composite-coated titanium surfaces promote increased adhesion and proliferation of fibroblasts. Wang Z; Wu G; Bai S; Feng Z; Dong Y; Zhou J; Qin H; Zhao Y Biomed Mater; 2014 Jun; 9(3):035006. PubMed ID: 24739496 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]