BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 21058340)

  • 1. Improved sub-cellular resolution via simultaneous analysis of organelle proteomics data across varied experimental conditions.
    Trotter MW; Sadowski PG; Dunkley TP; Groen AJ; Lilley KS
    Proteomics; 2010 Dec; 10(23):4213-9. PubMed ID: 21058340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of organelle discovery upon sub-cellular protein localisation.
    Breckels LM; Gatto L; Christoforou A; Groen AJ; Lilley KS; Trotter MW
    J Proteomics; 2013 Aug; 88():129-40. PubMed ID: 23523639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of genuine residents of plant endomembrane organelles using isotope tagging and multivariate statistics.
    Lilley KS; Dunkley TP
    Methods Mol Biol; 2008; 432():373-87. PubMed ID: 18370031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining LOPIT with differential ultracentrifugation for high-resolution spatial proteomics.
    Geladaki A; Kočevar Britovšek N; Breckels LM; Smith TS; Vennard OL; Mulvey CM; Crook OM; Gatto L; Lilley KS
    Nat Commun; 2019 Jan; 10(1):331. PubMed ID: 30659192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of trans-golgi network proteins in Arabidopsis thaliana root tissue.
    Groen AJ; Sancho-Andrés G; Breckels LM; Gatto L; Aniento F; Lilley KS
    J Proteome Res; 2014 Feb; 13(2):763-76. PubMed ID: 24344820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of Organelle Proteins by Isotope Tagging: Current status and potential applications in drug discovery research.
    Elzek MAW; Christopher JA; Breckels LM; Lilley KS
    Drug Discov Today Technol; 2021 Dec; 39():57-67. PubMed ID: 34906326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative proteomic analysis to profile dynamic changes in the spatial distribution of cellular proteins.
    Yan W; Hwang D; Aebersold R
    Methods Mol Biol; 2008; 432():389-401. PubMed ID: 18370032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of organelle proteins by isotope tagging (LOPIT).
    Dunkley TP; Watson R; Griffin JL; Dupree P; Lilley KS
    Mol Cell Proteomics; 2004 Nov; 3(11):1128-34. PubMed ID: 15295017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organelle proteomics experimental designs and analysis.
    Gatto L; Vizcaíno JA; Hermjakob H; Huber W; Lilley KS
    Proteomics; 2010 Nov; 10(22):3957-69. PubMed ID: 21080489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative proteomic approach to study subcellular localization of membrane proteins.
    Sadowski PG; Dunkley TP; Shadforth IP; Dupree P; Bessant C; Griffin JL; Lilley KS
    Nat Protoc; 2006; 1(4):1778-89. PubMed ID: 17487160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using hyperLOPIT to perform high-resolution mapping of the spatial proteome.
    Mulvey CM; Breckels LM; Geladaki A; Britovšek NK; Nightingale DJH; Christoforou A; Elzek M; Deery MJ; Gatto L; Lilley KS
    Nat Protoc; 2017 Jun; 12(6):1110-1135. PubMed ID: 28471460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomics of Saccharomyces cerevisiae Organelles.
    Wiederhold E; Veenhoff LM; Poolman B; Slotboom DJ
    Mol Cell Proteomics; 2010 Mar; 9(3):431-45. PubMed ID: 19955081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organellar proteomics of embryonic stem cells.
    Shekari F; Baharvand H; Salekdeh GH
    Adv Protein Chem Struct Biol; 2014; 95():215-30. PubMed ID: 24985774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Bayesian mixture modelling approach for spatial proteomics.
    Crook OM; Mulvey CM; Kirk PDW; Lilley KS; Gatto L
    PLoS Comput Biol; 2018 Nov; 14(11):e1006516. PubMed ID: 30481170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant organelle proteomics: collaborating for optimal cell function.
    Agrawal GK; Bourguignon J; Rolland N; Ephritikhine G; Ferro M; Jaquinod M; Alexiou KG; Chardot T; Chakraborty N; Jolivet P; Doonan JH; Rakwal R
    Mass Spectrom Rev; 2011; 30(5):772-853. PubMed ID: 21038434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomics methods for subcellular proteome analysis.
    Drissi R; Dubois ML; Boisvert FM
    FEBS J; 2013 Nov; 280(22):5626-34. PubMed ID: 24034475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organelle proteomics: implications for subcellular fractionation in proteomics.
    Huber LA; Pfaller K; Vietor I
    Circ Res; 2003 May; 92(9):962-8. PubMed ID: 12750306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical proteomics for subcellular proteome analysis.
    Zhu H; Tamura T; Hamachi I
    Curr Opin Chem Biol; 2019 Feb; 48():1-7. PubMed ID: 30170243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organelle proteomics.
    Duclos S; Desjardins M
    Methods Mol Biol; 2011; 753():117-28. PubMed ID: 21604119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant organelle proteomics.
    Lilley KS; Dupree P
    Curr Opin Plant Biol; 2007 Dec; 10(6):594-9. PubMed ID: 17913569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.