BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 21058511)

  • 41. Phylogenomics. Ancestral primate viewed.
    O'Brien SJ; Stanyon R
    Nature; 1999 Nov; 402(6760):365-6. PubMed ID: 10586870
    [No Abstract]   [Full Text] [Related]  

  • 42. Independent centromere formation in a capricious, gene-free domain of chromosome 13q21 in Old World monkeys and pigs.
    Cardone MF; Alonso A; Pazienza M; Ventura M; Montemurro G; Carbone L; de Jong PJ; Stanyon R; D'Addabbo P; Archidiacono N; She X; Eichler EE; Warburton PE; Rocchi M
    Genome Biol; 2006; 7(10):R91. PubMed ID: 17040560
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reciprocal painting between humans, De Brazza's and patas monkeys reveals a major bifurcation in the Cercopithecini phylogenetic tree.
    Stanyon R; Bruening R; Stone G; Shearin A; Bigoni F
    Cytogenet Genome Res; 2005; 108(1-3):175-82. PubMed ID: 15545727
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Defining the ancestral karyotype of all primates by multidirectional chromosome painting between tree shrews, lemurs and humans.
    Müller S; Stanyon R; O'Brien PC; Ferguson-Smith MA; Plesker R; Wienberg J
    Chromosoma; 1999 Nov; 108(6):393-400. PubMed ID: 10591999
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Towards the delineation of the ancestral eutherian genome organization: comparative genome maps of human and the African elephant (Loxodonta africana) generated by chromosome painting.
    Frönicke L; Wienberg J; Stone G; Adams L; Stanyon R
    Proc Biol Sci; 2003 Jul; 270(1522):1331-40. PubMed ID: 12965023
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Low, complex and probably reticulated chromosome evolution of Sciuromorpha (Rodentia) and Lagomorpha.
    Richard F; Dutrillaux B
    Cytogenet Genome Res; 2012; 137(2-4):218-32. PubMed ID: 22846378
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The 14/15 association as a paradigmatic example of tracing karyotype evolution in New World monkeys.
    Capozzi O; Archidiacono N; Lorusso N; Stanyon R; Rocchi M
    Chromosoma; 2016 Sep; 125(4):747-56. PubMed ID: 26667930
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cytogenetic studies of small ape (Hylobatidae) chromosomes.
    Stanyon R
    Tsitologiia; 2013; 55(3):167-71. PubMed ID: 23795459
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chromosome painting in Callicebus lugens, the species with the lowest diploid number (2n=16) known in primates.
    Stanyon R; Bonvicino CR; Svartman M; Seuánez HN
    Chromosoma; 2003 Dec; 112(4):201-6. PubMed ID: 14608465
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multiple intrasyntenic rearrangements and rapid speciation in voles.
    Romanenko SA; Serdyukova NA; Perelman PL; Trifonov VA; Golenishchev FN; Bulatova NS; Stanyon R; Graphodatsky AS
    Sci Rep; 2018 Oct; 8(1):14980. PubMed ID: 30297915
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A centromere-specific retroviral element associated with breaks of synteny in macropodine marsupials.
    Ferreri GC; Marzelli M; Rens W; O'Neill RJ
    Cytogenet Genome Res; 2004; 107(1-2):115-8. PubMed ID: 15305065
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular cytogenetic dissection of human chromosomes 3 and 21 evolution.
    Müller S; Stanyon R; Finelli P; Archidiacono N; Wienberg J
    Proc Natl Acad Sci U S A; 2000 Jan; 97(1):206-11. PubMed ID: 10618396
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cross-species chromosome painting in Cetartiodactyla: reconstructing the karyotype evolution in key phylogenetic lineages.
    Kulemzina AI; Trifonov VA; Perelman PL; Rubtsova NV; Volobuev V; Ferguson-Smith MA; Stanyon R; Yang F; Graphodatsky AS
    Chromosome Res; 2009; 17(3):419-36. PubMed ID: 19350402
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The interplay between genome organization and nuclear architecture of primate evolutionary neo-centromeres.
    Lomiento M; Grasser F; Rocchi M; Müller S
    Genomics; 2013 Oct; 102(4):288-95. PubMed ID: 23648727
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interpretation of karyotype evolution should consider chromosome structural constraints.
    Schubert I; Lysak MA
    Trends Genet; 2011 Jun; 27(6):207-16. PubMed ID: 21592609
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Conserved although very different karyotypes in Gliridae and Sciuridae and their contribution to chromosomal signatures in Glires.
    Sannier J; Gerbault-Seureau M; Dutrillaux B; Richard FA
    Cytogenet Genome Res; 2011; 134(1):51-63. PubMed ID: 21430366
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chromosome painting of the pygmy tree shrew shows that no derived cytogenetic traits link primates and scandentia.
    Dumas F; Houck ML; Bigoni F; Perelman P; Romanenko SA; Stanyon R
    Cytogenet Genome Res; 2012; 136(3):175-9. PubMed ID: 22488112
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evolutionary descent of a human chromosome 6 neocentromere: a jump back to 17 million years ago.
    Capozzi O; Purgato S; D'Addabbo P; Archidiacono N; Battaglia P; Baroncini A; Capucci A; Stanyon R; Della Valle G; Rocchi M
    Genome Res; 2009 May; 19(5):778-84. PubMed ID: 19411601
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Comparative cytogenetics of rodents].
    Romanenko SA; Lemskaia NA; Beklemisheva VR; Perel'man PL; Serdiukova NA; Grafodatskiĭ AS
    Genetika; 2010 Sep; 46(9):1285-9. PubMed ID: 21061636
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chromosomal phylogeny and evolution of gibbons (Hylobatidae).
    Müller S; Hollatz M; Wienberg J
    Hum Genet; 2003 Nov; 113(6):493-501. PubMed ID: 14569461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.