These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 21058687)

  • 21. One-Step Laser Patterned Highly Uniform Reduced Graphene Oxide Thin Films for Circuit-Enabled Tattoo and Flexible Humidity Sensor Application.
    Park R; Kim H; Lone S; Jeon S; Kwon YW; Shin B; Hong SW
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29882824
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Graphene-based materials in electrochemistry.
    Chen D; Tang L; Li J
    Chem Soc Rev; 2010 Aug; 39(8):3157-80. PubMed ID: 20589275
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transparent, flexible conducting hybrid multilayer thin films of multiwalled carbon nanotubes with graphene nanosheets.
    Hong TK; Lee DW; Choi HJ; Shin HS; Kim BS
    ACS Nano; 2010 Jul; 4(7):3861-8. PubMed ID: 20604532
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Programmable digital memory devices based on nanoscale thin films of a thermally dimensionally stable polyimide.
    Lee TJ; Chang CW; Hahm SG; Kim K; Park S; Kim DM; Kim J; Kwon WS; Liou GS; Ree M
    Nanotechnology; 2009 Apr; 20(13):135204. PubMed ID: 19420490
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles.
    He H; Gao C
    ACS Appl Mater Interfaces; 2010 Nov; 2(11):3201-10. PubMed ID: 20958021
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct Induction of Porous Graphene from Mechanically Strong and Waterproof Biopaper for On-Chip Multifunctional Flexible Electronics.
    Zhao N; Zhang H; Yang S; Sun Y; Zhao G; Fan W; Yan Z; Lin J; Wan C
    Small; 2023 Oct; 19(43):e2300242. PubMed ID: 37381614
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors.
    Choi BG; Park H; Park TJ; Yang MH; Kim JS; Jang SY; Heo NS; Lee SY; Kong J; Hong WH
    ACS Nano; 2010 May; 4(5):2910-8. PubMed ID: 20377244
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphene-based composite materials.
    Stankovich S; Dikin DA; Dommett GH; Kohlhaas KM; Zimney EJ; Stach EA; Piner RD; Nguyen ST; Ruoff RS
    Nature; 2006 Jul; 442(7100):282-6. PubMed ID: 16855586
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental observation of the quantum Hall effect and Berry's phase in graphene.
    Zhang Y; Tan YW; Stormer HL; Kim P
    Nature; 2005 Nov; 438(7065):201-4. PubMed ID: 16281031
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A polymer/semiconductor write-once read-many-times memory.
    Möller S; Perlov C; Jackson W; Taussig C; Forrest SR
    Nature; 2003 Nov; 426(6963):166-9. PubMed ID: 14614502
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of very large values of magnetoresistance in a graphene nanoribbon device.
    Kim WY; Kim KS
    Nat Nanotechnol; 2008 Jul; 3(7):408-12. PubMed ID: 18654564
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monolithic and Flexible ZnS/SnO
    Zhang C; Xie Y; Deng H; Tumlin T; Zhang C; Su JW; Yu P; Lin J
    Small; 2017 May; 13(18):. PubMed ID: 28296060
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Femtosecond laser rapid fabrication of large-area rose-like micropatterns on freestanding flexible graphene films.
    Shi X; Li X; Jiang L; Qu L; Zhao Y; Ran P; Wang Q; Cao Q; Ma T; Lu Y
    Sci Rep; 2015 Nov; 5():17557. PubMed ID: 26615800
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoscale tunable reduction of graphene oxide for graphene electronics.
    Wei Z; Wang D; Kim S; Kim SY; Hu Y; Yakes MK; Laracuente AR; Dai Z; Marder SR; Berger C; King WP; de Heer WA; Sheehan PE; Riedo E
    Science; 2010 Jun; 328(5984):1373-6. PubMed ID: 20538944
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis of a pillared graphene nanostructure: a counterpart of three-dimensional carbon architectures.
    Paul RK; Ghazinejad M; Penchev M; Lin J; Ozkan M; Ozkan CS
    Small; 2010 Oct; 6(20):2309-13. PubMed ID: 20862676
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials.
    Ahn JH; Kim HS; Lee KJ; Jeon S; Kang SJ; Sun Y; Nuzzo RG; Rogers JA
    Science; 2006 Dec; 314(5806):1754-7. PubMed ID: 17170298
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Scalable, flexible and high resolution patterning of CVD graphene.
    Hofmann M; Hsieh YP; Hsu AL; Kong J
    Nanoscale; 2014 Jan; 6(1):289-92. PubMed ID: 24189709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid method for design and fabrication of passive micromixers in microfluidic devices using a direct-printing process.
    Liu AL; He FY; Wang K; Zhou T; Lu Y; Xia XH
    Lab Chip; 2005 Sep; 5(9):974-8. PubMed ID: 16100582
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Laser direct writing of graphene nanostructures beyond the diffraction limit by graphene oxidation.
    Xu X; Shi B; Zhang X; Liu Y; Cai W; Ren M; Jiang X; Rupp RA; Wu Q; Xu J
    Opt Express; 2018 Aug; 26(16):20726-20734. PubMed ID: 30119378
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces.
    Qin W; Li X; Bian WW; Fan XJ; Qi JY
    Biomaterials; 2010 Feb; 31(5):1007-16. PubMed ID: 19880174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.