These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 21058698)

  • 1. Effect of lipid phase transition on molecular assembly and structural stability of bacteriorhodopsin reconstituted into phosphatidylcholine liposomes with different acyl-chain lengths.
    Yokoyama Y; Negishi L; Kitoh T; Sonoyama M; Asami Y; Mitaku S
    J Phys Chem B; 2010 Dec; 114(47):15706-11. PubMed ID: 21058698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural change of bacteriorhodopsin in the purple membrane above pH 10 decreases heterogeneity of the irreversible photobleaching components.
    Yokoyama Y; Sonoyama M; Nakano T; Mitaku S
    J Biochem; 2007 Sep; 142(3):325-33. PubMed ID: 17646179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photobleaching of bacteriorhodopsin solubilized with triton X-100.
    Sasaki T; Sonoyama M; Demura M; Mitaku S
    Photochem Photobiol; 2005; 81(5):1131-7. PubMed ID: 15934791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrophobic mismatch and long-range protein/lipid interactions in bacteriorhodopsin/phosphatidylcholine vesicles.
    Piknová B; Pérochon E; Tocanne JF
    Eur J Biochem; 1993 Dec; 218(2):385-96. PubMed ID: 8269927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhomogeneous stability of bacteriorhodopsin in purple membrane against photobleaching at high temperature.
    Yokoyama Y; Sonoyama M; Mitaku S
    Proteins; 2004 Feb; 54(3):442-54. PubMed ID: 14747993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Irreversible photobleaching of bacteriorhodopsin in a high-temperature intermediate state.
    Yokoyama Y; Sonoyama M; Mitaku S
    J Biochem; 2002 Jun; 131(6):785-90. PubMed ID: 12038973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein rotation and chromophore orientation in reconstituted bacteriorhodopsin vesicles.
    Hoffmann W; Restall CJ; Hyla R; Chapman D
    Biochim Biophys Acta; 1980 Nov; 602(3):531-8. PubMed ID: 6893670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physicochemical studies of bacteriorhodopsin reconstituted in partially fluorinated phosphatidylcholine bilayers.
    Yoshino M; Kikukawa T; Takahashi H; Takagi T; Yokoyama Y; Amii H; Baba T; Kanamori T; Sonoyama M
    J Phys Chem B; 2013 May; 117(18):5422-9. PubMed ID: 23611734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatic effects influence the formation of two-dimensional crystals of bacteriorhodopsin reconstituted into dimyristoylphosphatidylcholine membranes.
    Negishi L; Mitaku S
    J Biochem; 2011 Jul; 150(1):113-9. PubMed ID: 21478486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability of the two-dimensional lattice of bacteriorhodopsin reconstituted in partially fluorinated phosphatidylcholine bilayers.
    Takahashi H; Yoshino M; Morita K; Takagi T; Yokoyama Y; Kikukawa T; Amii H; Kanamori T; Sonoyama M
    Biochim Biophys Acta Biomembr; 2019 Mar; 1861(3):631-642. PubMed ID: 30582916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstitution of bacteriorhodopsin into cyclic lipid vesicles.
    Shibakami M; Tsuihiji H; Miyoshi S; Nakamura M; Goto R; Mitaku S; Sonoyama M
    Biosci Biotechnol Biochem; 2008 Jun; 72(6):1623-5. PubMed ID: 18540084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid--protein interactions in bacteriorhodopsin--dimyristoylphosphatidylcholine vesicles.
    Heyn MP; Cherry RJ; Dencher NA
    Biochemistry; 1981 Feb; 20(4):840-9. PubMed ID: 7213618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of fluoxetine with phosphatidylcholine liposomes.
    Momo F; Fabris S; Stevanato R
    Biophys Chem; 2005 Oct; 118(1):15-21. PubMed ID: 15994001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural changes in bacteriorhodopsin in purple membranes induced by irreversible photobleaching with heterogeneous and homogeneous stability.
    Yokoyama Y; Sonoyama M; Mitaku S
    Photochem Photobiol; 2010; 86(2):297-301. PubMed ID: 19930116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calorimetric and fluorescence depolarization studies on the lipid phase transition of bacteriorhodopsin--dimyristoylphosphatidylcholine vesicles.
    Heyn MP; Blume A; Rehorek M; Dencher NA
    Biochemistry; 1981 Dec; 20(25):7109-15. PubMed ID: 7317369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intramembrane substitutions in helix D of bacteriorhodopsin disrupt the purple membrane.
    Krebs MP; Li W; Halambeck TP
    J Mol Biol; 1997 Mar; 267(1):172-83. PubMed ID: 9096216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamical characteristics and volume compressibility of dipalmitoylphosphatidylcholine liposomes containing bacteriorhodopsin.
    Piknová B; Hianik T; Shestimirov VN; Shnyrov VL
    Gen Physiol Biophys; 1991 Aug; 10(4):395-409. PubMed ID: 1769518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interlamellar coupling of phospholipid bilayers in liposomes: an emergent property of lipid rearrangement.
    Parry MJ; Hagen M; Mouritsen OG; Kinnunen PK; Alakoskela JM
    Langmuir; 2010 Apr; 26(7):4909-15. PubMed ID: 20180577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of functionality and structural stability of bacteriorhodopsin reconstituted in partially fluorinated dimyristoylphosphatidylcholine liposomes with different perfluoroalkyl chain lengths.
    Hashimoto M; Murai Y; Morita K; Kikukawa T; Takagi T; Takahashi H; Yokoyama Y; Amii H; Sonoyama M
    Biochim Biophys Acta Biomembr; 2021 Oct; 1863(10):183686. PubMed ID: 34175295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The exciton origin of the visible circular dichroism spectrum of bacteriorhodopsin.
    Pescitelli G; Woody RW
    J Phys Chem B; 2012 Jun; 116(23):6751-63. PubMed ID: 22329810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.