BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 21058722)

  • 1. Bingel-Hirsch reactions on non-IPR Gd3N@C2n (2n = 82 and 84).
    Alegret N; Chaur MN; Santos E; Rodríguez-Fortea A; Echegoyen L; Poblet JM
    J Org Chem; 2010 Dec; 75(23):8299-302. PubMed ID: 21058722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bingel-Hirsch addition on non-isolated-pentagon-rule Gd3N@C2n (2n = 82 and 84) metallofullerenes: products under kinetic control.
    Alegret N; Salvadó P; Rodríguez-Fortea A; Poblet JM
    J Org Chem; 2013 Oct; 78(19):9986-90. PubMed ID: 24004274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure, stability, and cluster-cage interactions in nitride clusterfullerenes M3N@C2n (M = Sc, Y; 2n = 68-98): a density functional theory study.
    Popov AA; Dunsch L
    J Am Chem Soc; 2007 Sep; 129(38):11835-49. PubMed ID: 17760444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Regioselectivity of Bingel-Hirsch Cycloadditions on Isolated Pentagon Rule Endohedral Metallofullerenes.
    Garcia-Borràs M; Cerón MR; Osuna S; Izquierdo M; Luis JM; Echegoyen L; Solà M
    Angew Chem Int Ed Engl; 2016 Feb; 55(7):2374-7. PubMed ID: 26765333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bingel-Hirsch addition on endohedral metallofullerenes: kinetic versus thermodynamic control.
    Alegret N; Rodríguez-Fortea A; Poblet JM
    Chemistry; 2013 Apr; 19(16):5061-9. PubMed ID: 23423986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aromaticity as the driving force for the stability of non-IPR endohedral metallofullerene Bingel-Hirsch adducts.
    Garcia-Borràs M; Osuna S; Swart M; Luis JM; Echegoyen L; Solà M
    Chem Commun (Camb); 2013 Oct; 49(78):8767-9. PubMed ID: 23959275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is the isolated pentagon rule merely a suggestion for endohedral fullerenes? The structure of a second egg-shaped endohedral fullerene--Gd3N@C(s)(39663)-C82.
    Mercado BQ; Beavers CM; Olmstead MM; Chaur MN; Walker K; Holloway BC; Echegoyen L; Balch AL
    J Am Chem Soc; 2008 Jun; 130(25):7854-5. PubMed ID: 18517200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Violating the isolated pentagon rule (IPR): endohedral non-IPR C98 cages of Gd2@C98.
    Zhao X; Gao WY; Yang T; Zheng JJ; Li LS; He L; Cao RJ; Nagase S
    Inorg Chem; 2012 Feb; 51(4):2039-45. PubMed ID: 22288613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of aromaticity in determining the molecular structure and reactivity of (endohedral metallo)fullerenes.
    Garcia-Borràs M; Osuna S; Luis JM; Swart M; Solà M
    Chem Soc Rev; 2014 Jul; 43(14):5089-105. PubMed ID: 24831453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 89Y and 13C NMR cluster and carbon cage studies of an yttrium metallofullerene family, Y3N@C(2n) (n = 40-43).
    Fu W; Xu L; Azurmendi H; Ge J; Fuhrer T; Zuo T; Reid J; Shu C; Harich K; Dorn HC
    J Am Chem Soc; 2009 Aug; 131(33):11762-9. PubMed ID: 19639998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large metal ions in a relatively small fullerene cage: the structure of Gd3N@C2(22010)-C78 departs from the isolated pentagon rule.
    Beavers CM; Chaur MN; Olmstead MM; Echegoyen L; Balch AL
    J Am Chem Soc; 2009 Aug; 131(32):11519-24. PubMed ID: 19601601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yb@C2n (n = 40, 41, 42): new fullerene allotropes with unexplored electrochemical properties.
    Lu X; Slanina Z; Akasaka T; Tsuchiya T; Mizorogi N; Nagase S
    J Am Chem Soc; 2010 Apr; 132(16):5896-905. PubMed ID: 20373738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The maximum pentagon separation rule provides a guideline for the structures of endohedral metallofullerenes.
    Rodríguez-Fortea A; Alegret N; Balch AL; Poblet JM
    Nat Chem; 2010 Nov; 2(11):955-61. PubMed ID: 20966952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical understanding of a non-IPR metallofullerene: stabilization of encaged metals on fused-pentagon bonds in La2@C72.
    Lu X; Nikawa H; Nakahodo T; Tsuchiya T; Ishitsuka MO; Maeda Y; Akasaka T; Toki M; Sawa H; Slanina Z; Mizorogi N; Nagase S
    J Am Chem Soc; 2008 Jul; 130(28):9129-36. PubMed ID: 18570421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and electrochemical studies of Bingel-Hirsch derivatives of M(3)N@I(h)-C(80) (M=Sc, Lu).
    Pinzón JR; Zuo T; Echegoyen L
    Chemistry; 2010 Apr; 16(16):4864-9. PubMed ID: 20235246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large endohedral fullerenes containing two metal ions, Sm2@D2(35)-C88, Sm2@C1(21)-C90, and Sm2@D3(85)-C92, and their relationship to endohedral fullerenes containing two gadolinium ions.
    Yang H; Jin H; Hong B; Liu Z; Beavers CM; Zhen H; Wang Z; Mercado BQ; Olmstead MM; Balch AL
    J Am Chem Soc; 2011 Oct; 133(42):16911-9. PubMed ID: 21913729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of non-IPR fullerene films versus size of the building blocks.
    Löffler D; Ulas S; Jester SS; Weis P; Böttcher A; Kappes MM
    Phys Chem Chem Phys; 2010 Sep; 12(36):10671-84. PubMed ID: 20730151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative investigation on non-IPR C68 and IPR C78 fullerenes encaging Sc3N molecules.
    Park SS; Liu D; Hagelberg F
    J Phys Chem A; 2005 Oct; 109(39):8865-73. PubMed ID: 16834290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable non-IPR C60 and C70 fullerenes containing a uniform distribution of pyrenes and adjacent pentagons.
    Zettergren H; Alcamí M; Martín F
    Chemphyschem; 2008 Apr; 9(6):861-6. PubMed ID: 18404775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New egg-shaped fullerenes: non-isolated pentagon structures of Tm3N@C(s)(51 365)-C84 and Gd3N@C(s)(51 365)-C84.
    Zuo T; Walker K; Olmstead MM; Melin F; Holloway BC; Echegoyen L; Dorn HC; Chaur MN; Chancellor CJ; Beavers CM; Balch AL; Athans AJ
    Chem Commun (Camb); 2008 Mar; (9):1067-9. PubMed ID: 18292892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.