BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 21059114)

  • 21. c-Jun expression in adult rat dorsal root ganglion neurons: differential response after central or peripheral axotomy.
    Broude E; McAtee M; Kelley MS; Bregman BS
    Exp Neurol; 1997 Nov; 148(1):367-77. PubMed ID: 9398479
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temporal and spatial expression of an intestinal Na+/PO4 3- cotransporter correlates with epithelial transformation during thyroid hormone-dependent frog metamorphosis.
    Ishizuya-Oka A; Stolow MA; Ueda S; Shi YB
    Dev Genet; 1997; 20(1):53-66. PubMed ID: 9094212
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thyroid hormone controls the development of connections between the spinal cord and limbs during Xenopus laevis metamorphosis.
    Marsh-Armstrong N; Cai L; Brown DD
    Proc Natl Acad Sci U S A; 2004 Jan; 101(1):165-70. PubMed ID: 14691251
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Lampreys as an animal model in regeneration studies after spinal cord injury].
    Rodicio MC; Barreiro-Iglesias A
    Rev Neurol; 2012 Aug; 55(3):157-66. PubMed ID: 22825976
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adeno-associated virus-mediated L1 expression promotes functional recovery after spinal cord injury.
    Chen J; Wu J; Apostolova I; Skup M; Irintchev A; Kügler S; Schachner M
    Brain; 2007 Apr; 130(Pt 4):954-69. PubMed ID: 17438016
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes within maturing neurons limit axonal regeneration in the developing spinal cord.
    Blackmore M; Letourneau PC
    J Neurobiol; 2006 Mar; 66(4):348-60. PubMed ID: 16408302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The African clawed frog Xenopus laevis: A model organism to study regeneration of the central nervous system.
    Lee-Liu D; Méndez-Olivos EE; Muñoz R; Larraín J
    Neurosci Lett; 2017 Jun; 652():82-93. PubMed ID: 27693567
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Developmental segregation of spinal networks driving axial- and hindlimb-based locomotion in metamorphosing Xenopus laevis.
    Combes D; Merrywest SD; Simmers J; Sillar KT
    J Physiol; 2004 Aug; 559(Pt 1):17-24. PubMed ID: 15235079
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The vocal motor neurons of Xenopus laevis: development of sex differences in axon number.
    Kelley DB; Dennison J
    J Neurobiol; 1990 Sep; 21(6):869-82. PubMed ID: 2077103
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regenerative capacity in the lamprey spinal cord is not altered after a repeated transection.
    Hanslik KL; Allen SR; Harkenrider TL; Fogerson SM; Guadarrama E; Morgan JR
    PLoS One; 2019; 14(1):e0204193. PubMed ID: 30699109
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regeneration of spinal neurons in inframammalian vertebrates: morphological and developmental aspects.
    Anderson MJ; Waxman SG
    J Hirnforsch; 1983; 24(4):371-98. PubMed ID: 6643991
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Timing of metamorphosis and the onset of the negative feedback loop between the thyroid gland and the pituitary is controlled by type II iodothyronine deiodinase in Xenopus laevis.
    Huang H; Cai L; Remo BF; Brown DD
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7348-53. PubMed ID: 11404476
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular and developmental analyses of thyroid hormone receptor function in Xenopus laevis, the African clawed frog.
    Buchholz DR; Paul BD; Fu L; Shi YB
    Gen Comp Endocrinol; 2006 Jan; 145(1):1-19. PubMed ID: 16266705
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metamorphosis-induced changes in the coupling of spinal thoraco-lumbar motor outputs during swimming in Xenopus laevis.
    Beyeler A; Métais C; Combes D; Simmers J; Le Ray D
    J Neurophysiol; 2008 Sep; 100(3):1372-83. PubMed ID: 18596184
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regeneration of supraspinal axons after transection of the thoracic spinal cord in the developing opossum, Didelphis virginiana.
    Wang XM; Terman JR; Martin GF
    J Comp Neurol; 1998 Aug; 398(1):83-97. PubMed ID: 9703028
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Variable effects of goitrogens in inducing precocious metamorphosis in sea lampreys (Petromyzon marinus).
    Manzon RG; Holmes JA; Youson JH
    J Exp Zool; 2001 Apr; 289(5):290-303. PubMed ID: 11241400
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distinctive gene profiles occur at key points during natural metamorphosis in the Xenopus laevis tadpole tail.
    Veldhoen N; Crump D; Werry K; Helbing CC
    Dev Dyn; 2002 Dec; 225(4):457-68. PubMed ID: 12454923
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vivo imaging: a dynamic imaging approach to study spinal cord regeneration.
    Laskowski CJ; Bradke F
    Exp Neurol; 2013 Apr; 242():11-7. PubMed ID: 22836145
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of RhoA in retrograde neuronal death and axon regeneration after spinal cord injury.
    Hu J; Zhang G; Rodemer W; Jin LQ; Shifman M; Selzer ME
    Neurobiol Dis; 2017 Feb; 98():25-35. PubMed ID: 27888137
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spinal cord repair: strategies to promote axon regeneration.
    McKerracher L
    Neurobiol Dis; 2001 Feb; 8(1):11-8. PubMed ID: 11162236
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.