These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 21059201)

  • 1. Improved vanillin production in baker's yeast through in silico design.
    Brochado AR; Matos C; Møller BL; Hansen J; Mortensen UH; Patil KR
    Microb Cell Fact; 2010 Nov; 9():84. PubMed ID: 21059201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae).
    Hansen EH; Møller BL; Kock GR; Bünner CM; Kristensen C; Jensen OR; Okkels FT; Olsen CE; Motawia MS; Hansen J
    Appl Environ Microbiol; 2009 May; 75(9):2765-74. PubMed ID: 19286778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of O-methyltransferase leads to improved vanillin production in baker's yeast only when complemented with model-guided network engineering.
    Brochado AR; Patil KR
    Biotechnol Bioeng; 2013 Feb; 110(2):656-9. PubMed ID: 23007522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving l-phenylacetylcarbinol production in Saccharomyces cerevisiae by in silico aided metabolic engineering.
    Iranmanesh E; Asadollahi MA; Biria D
    J Biotechnol; 2020 Jan; 308():27-34. PubMed ID: 31733223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of vanillin by different microorganisms: a review.
    Ma Q; Liu L; Zhao S; Huang Z; Li C; Jiang S; Li Q; Gu P
    World J Microbiol Biotechnol; 2022 Jan; 38(3):40. PubMed ID: 35018518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulatory control circuits for stabilizing long-term anabolic product formation in yeast.
    D'Ambrosio V; Dore E; Di Blasi R; van den Broek M; Sudarsan S; Horst JT; Ambri F; Sommer MOA; Rugbjerg P; Keasling JD; Mans R; Jensen MK
    Metab Eng; 2020 Sep; 61():369-380. PubMed ID: 32717328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.
    Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I
    Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vanillin biosynthetic pathways in plants.
    Kundu A
    Planta; 2017 Jun; 245(6):1069-1078. PubMed ID: 28357540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deregulation of S-adenosylmethionine biosynthesis and regeneration improves methylation in the E. coli de novo vanillin biosynthesis pathway.
    Kunjapur AM; Hyun JC; Prather KL
    Microb Cell Fact; 2016 Apr; 15():61. PubMed ID: 27067813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vivo Validation of In Silico Predicted Metabolic Engineering Strategies in Yeast: Disruption of α-Ketoglutarate Dehydrogenase and Expression of ATP-Citrate Lyase for Terpenoid Production.
    Gruchattka E; Kayser O
    PLoS One; 2015; 10(12):e0144981. PubMed ID: 26701782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A re-evaluation of the final step of vanillin biosynthesis in the orchid Vanilla planifolia.
    Yang H; Barros-Rios J; Kourteva G; Rao X; Chen F; Shen H; Liu C; Podstolski A; Belanger F; Havkin-Frenkel D; Dixon RA
    Phytochemistry; 2017 Jul; 139():33-46. PubMed ID: 28411481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benchmarking two commonly used
    Strucko T; Magdenoska O; Mortensen UH
    Metab Eng Commun; 2015 Dec; 2():99-108. PubMed ID: 34150513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered Reversal of Function in Glycolytic Yeast Promoters.
    Rajkumar AS; Özdemir E; Lis AV; Schneider K; Qin J; Jensen MK; Keasling JD
    ACS Synth Biol; 2019 Jun; 8(6):1462-1468. PubMed ID: 31051075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox engineering by ectopic expression of glutamate dehydrogenase genes links NADPH availability and NADH oxidation with cold growth in Saccharomyces cerevisiae.
    Ballester-Tomás L; Randez-Gil F; Pérez-Torrado R; Prieto JA
    Microb Cell Fact; 2015 Jul; 14():100. PubMed ID: 26156706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unravel the regulatory mechanism of Yrr1p phosphorylation in response to vanillin stress in Saccharomyces cerevisiae.
    Zhao W; Wang X; Yang B; Wang Y; Li Z; Bao X
    Microb Cell Fact; 2023 Mar; 22(1):48. PubMed ID: 36899374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vanillin Production in
    García-Hidalgo J; Brink DP; Ravi K; Paul CJ; Lidén G; Gorwa-Grauslund MF
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31924622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotechnological production of vanillin.
    Priefert H; Rabenhorst J; Steinbüchel A
    Appl Microbiol Biotechnol; 2001 Aug; 56(3-4):296-314. PubMed ID: 11548997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of 2,3-butanediol production by dCas9 gene expression system in Saccharomyces cerevisiae.
    Morita K; Seike T; Ishii J; Matsuda F; Shimizu H
    J Biosci Bioeng; 2022 Mar; 133(3):208-212. PubMed ID: 34998687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vanillin-bioconversion and bioengineering of the most popular plant flavor and its de novo biosynthesis in the vanilla orchid.
    Gallage NJ; Møller BL
    Mol Plant; 2015 Jan; 8(1):40-57. PubMed ID: 25578271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of para-aminobenzoic acid from different carbon-sources in engineered Saccharomyces cerevisiae.
    Averesch NJ; Winter G; Krömer JO
    Microb Cell Fact; 2016 May; 15():89. PubMed ID: 27230236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.