BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 2105965)

  • 1. Enhanced glycosyltransferase activity during thermotolerance development in mammalian cells.
    Henle KJ; Monson TP; Stone A
    J Cell Physiol; 1990 Feb; 142(2):372-8. PubMed ID: 2105965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of hyperthermia on activity of three glycosyltransferases in Chinese hamster ovary cells.
    Henle KJ; Stone A; Chatterjee SK
    Cancer Res; 1988 Oct; 48(20):5717-21. PubMed ID: 3139282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of cycloheximide or puromycin on induction of thermotolerance by sodium arsenite in Chinese hamster ovary cells: involvement of heat shock proteins.
    Lee YJ; Dewey WC
    J Cell Physiol; 1987 Jul; 132(1):41-8. PubMed ID: 3597553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in thermotolerance induced by heat or sodium arsenite: cell killing and inhibition of protein synthesis.
    Lee YJ; Perlaky L; Dewey WC; Armour EP; Corry PM
    Radiat Res; 1990 Mar; 121(3):295-303. PubMed ID: 2179980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in thermotolerance induced by heat or sodium arsenite: correlation between redistribution of a 26-kDa protein and development of protein synthesis-independent thermotolerance in CHO cells.
    Lee YJ; Kim DH; Hou ZZ; Corry PM
    Radiat Res; 1991 Sep; 127(3):325-34. PubMed ID: 1886989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermotolerance induced by heat, sodium arsenite, or puromycin: its inhibition and differences between 43 degrees C and 45 degrees C.
    Lee YJ; Dewey WC
    J Cell Physiol; 1988 Jun; 135(3):397-406. PubMed ID: 3294234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of heat-shock proteins in the induction of thermotolerance in Chinese hamster V79 cells by heat and chemical agents.
    Hatayama T; Kano E; Taniguchi Y; Nitta K; Wakatsuki T; Kitamura T; Imahara H
    Int J Hyperthermia; 1991; 7(1):61-74. PubMed ID: 2051077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quercetin, an inhibitor of heat shock protein synthesis, inhibits the acquisition of thermotolerance in a human colon carcinoma cell line.
    Koishi M; Hosokawa N; Sato M; Nakai A; Hirayoshi K; Hiraoka M; Abe M; Nagata K
    Jpn J Cancer Res; 1992 Nov; 83(11):1216-22. PubMed ID: 1483935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abnormal proteins as the trigger for the induction of stress responses: heat, diamide, and sodium arsenite.
    Lee KJ; Hahn GM
    J Cell Physiol; 1988 Sep; 136(3):411-20. PubMed ID: 3170639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of amino acid analogs on the development of thermotolerance and on thermotolerant cells.
    Laszlo A; Li GC
    J Cell Physiol; 1993 Feb; 154(2):419-32. PubMed ID: 8425921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Possible role of localized protein denaturation in the mechanism of induction of thermotolerance by heat, sodium-arsenite and ethanol.
    Burgman PW; Kampinga HH; Konings AW
    Int J Hyperthermia; 1993; 9(1):151-62. PubMed ID: 8381841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for two states of thermotolerance in mammalian cells.
    Laszlo A
    Int J Hyperthermia; 1988; 4(5):513-26. PubMed ID: 3392425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation between synthesis of heat shock proteins and development of thermotolerance in Chinese hamster fibroblasts.
    Li GC; Werb Z
    Proc Natl Acad Sci U S A; 1982 May; 79(10):3218-22. PubMed ID: 6954473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between hyperthermia-induced heat-shock proteins and thermotolerance in Morris hepatoma cells.
    Landry J; Chrétien P
    Can J Biochem Cell Biol; 1983 Jun; 61(6):428-37. PubMed ID: 6883172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein glycosylation in heat-sensitive and thermotolerance-deficient mutants of Chinese hamster ovary cells.
    Henle KJ; Nagle WA; Bedford JS; Harvey WF
    J Cell Sci; 1990 Apr; 95 ( Pt 4)():555-61. PubMed ID: 2117015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of heat shock protein synthesis and protein glycosylation by stepdown heating.
    Henle KJ; Nagle WA
    Exp Cell Res; 1991 Oct; 196(2):184-91. PubMed ID: 1909966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acquisition of thermotolerance induced by heat and arsenite in HeLa S3 cells: multiple pathways to induce tolerance?
    Kampinga HH; Brunsting JF; Konings AW
    J Cell Physiol; 1992 Feb; 150(2):406-15. PubMed ID: 1370842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of thermotolerance and enhanced heat shock protein synthesis in Chinese hamster fibroblasts by sodium arsenite and by ethanol.
    Li GC
    J Cell Physiol; 1983 May; 115(2):116-22. PubMed ID: 6841458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat shock response by cells treated with azetidine-2-carboxylic acid.
    Van Rijn J; Wiegant FA; Van den Berg J; Van Wijk R
    Int J Hyperthermia; 2000; 16(4):305-18. PubMed ID: 10949127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel poly-GalNAcbeta1-4GlcNAc (LacdiNAc) and fucosylated poly-LacdiNAc N-glycans from mammalian cells expressing beta1,4-N-acetylgalactosaminyltransferase and alpha1,3-fucosyltransferase.
    Kawar ZS; Haslam SM; Morris HR; Dell A; Cummings RD
    J Biol Chem; 2005 Apr; 280(13):12810-9. PubMed ID: 15653684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.