These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 21059930)

  • 1. Stimulated Raman photoacoustic imaging.
    Yakovlev VV; Zhang HF; Noojin GD; Denton ML; Thomas RJ; Scully MO
    Proc Natl Acad Sci U S A; 2010 Nov; 107(47):20335-9. PubMed ID: 21059930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compact high power barium nitrite crystal-based Raman laser at 1197 nm for photoacoustic imaging of fat.
    Li R; Slipchenko MN; Wang P; Cheng JX
    J Biomed Opt; 2013 Apr; 18(4):040502. PubMed ID: 23536057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulated Raman scattering imaging by continuous-wave laser excitation.
    Hu CR; Slipchenko MN; Wang P; Wang P; Lin JD; Simpson G; Hu B; Cheng JX
    Opt Lett; 2013 May; 38(9):1479-81. PubMed ID: 23632524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring stimulated Raman scattering with photoacoustic detection.
    Yakovlev VV; Noojin GD; Denton ML; Rockwell BA; Thomas RJ
    Opt Lett; 2011 Apr; 36(7):1233-5. PubMed ID: 21479040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-free chemically specific imaging in planta with stimulated Raman scattering microscopy.
    Mansfield JC; Littlejohn GR; Seymour MP; Lind RJ; Perfect S; Moger J
    Anal Chem; 2013 May; 85(10):5055-63. PubMed ID: 23581493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical-resolution photoacoustic microscopy with ultrafast dual-wavelength excitation.
    Zhou Y; Liang S; Li M; Liu C; Lai P; Wang L
    J Biophotonics; 2020 Jun; 13(6):e201960229. PubMed ID: 32049415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis.
    Wang K; Zhang D; Charan K; Slipchenko MN; Wang P; Xu C; Cheng JX
    J Biophotonics; 2013 Oct; 6(10):815-20. PubMed ID: 23840041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasonic enhancement of photoacoustic emissions by nanoparticle-targeted cavitation.
    McLaughlan JR; Roy RA; Ju H; Murray TW
    Opt Lett; 2010 Jul; 35(13):2127-9. PubMed ID: 20596168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast denoising and lossless spectrum extraction in stimulated Raman scattering microscopy.
    Li Y; Shen B; Zou G; Wang S; Qu J; Hu R; Liu L
    J Biophotonics; 2021 Aug; 14(8):e202100080. PubMed ID: 33998161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy.
    Dudovich N; Oron D; Silberberg Y
    Nature; 2002 Aug; 418(6897):512-4. PubMed ID: 12152073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Introduction to Infrared and Raman-Based Biomedical Molecular Imaging and Comparison with Other Modalities.
    Geraldes CFGC
    Molecules; 2020 Nov; 25(23):. PubMed ID: 33256052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic Imaging of Deep Tissue through Photoacoustic Detection of Molecular Vibration.
    Wang P; Rajian JR; Cheng JX
    J Phys Chem Lett; 2013 Jul; 4(13):2177-2185. PubMed ID: 24073304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2  MHz multi-wavelength pulsed laser for functional photoacoustic microscopy.
    Liang Y; Jin L; Guan BO; Wang L
    Opt Lett; 2017 Apr; 42(7):1452-1455. PubMed ID: 28362790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coherent nonlinear optical imaging: beyond fluorescence microscopy.
    Min W; Freudiger CW; Lu S; Xie XS
    Annu Rev Phys Chem; 2011; 62():507-30. PubMed ID: 21453061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Chemical Sensing with Multiorder Coherent Raman Scattering Spectroscopic Dephasing.
    Zhu H; Xu C; Wang DW; Yakovlev VV; Zhang D
    Anal Chem; 2022 Jun; 94(23):8409-8415. PubMed ID: 35623094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic study of high-frequency ultrasonic transducer design for laser-scanning photoacoustic ophthalmoscopy.
    Ma T; Zhang X; Chiu CT; Chen R; Kirk Shung K; Zhou Q; Jiao S
    J Biomed Opt; 2014 Jan; 19(1):16015. PubMed ID: 24441942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy.
    Ganikhanov F; Evans CL; Saar BG; Xie XS
    Opt Lett; 2006 Jun; 31(12):1872-4. PubMed ID: 16729099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implementation of a Coherent Anti-Stokes Raman Scattering (CARS) System on a Ti:Sapphire and OPO Laser Based Standard Laser Scanning Microscope.
    Mytskaniuk V; Bardin F; Boukhaddaoui H; Rigneault H; Tricaud N
    J Vis Exp; 2016 Jul; (113):. PubMed ID: 27501285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Label-free optical imaging of nonfluorescent molecules by stimulated radiation.
    Min W
    Curr Opin Chem Biol; 2011 Dec; 15(6):831-7. PubMed ID: 22055495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multicolour chemical imaging of plant tissues with hyperspectral stimulated Raman scattering microscopy.
    Iino T; Hashimoto K; Asai T; Kuchitsu K; Ozeki Y
    Analyst; 2021 Feb; 146(4):1234-1238. PubMed ID: 33355541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.