BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 21059948)

  • 1. Dynamics of alpha-helical subdomain rotation in the intact maltose ATP-binding cassette transporter.
    Orelle C; Alvarez FJ; Oldham ML; Orelle A; Wiley TE; Chen J; Davidson AL
    Proc Natl Acad Sci U S A; 2010 Nov; 107(47):20293-8. PubMed ID: 21059948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Full engagement of liganded maltose-binding protein stabilizes a semi-open ATP-binding cassette dimer in the maltose transporter.
    Alvarez FJ; Orelle C; Huang Y; Bajaj R; Everly RM; Klug CS; Davidson AL
    Mol Microbiol; 2015 Dec; 98(5):878-94. PubMed ID: 26268698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maltose-binding protein is open in the catalytic transition state for ATP hydrolysis during maltose transport.
    Austermuhle MI; Hall JA; Klug CS; Davidson AL
    J Biol Chem; 2004 Jul; 279(27):28243-50. PubMed ID: 15117946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Both maltose-binding protein and ATP are required for nucleotide-binding domain closure in the intact maltose ABC transporter.
    Orelle C; Ayvaz T; Everly RM; Klug CS; Davidson AL
    Proc Natl Acad Sci U S A; 2008 Sep; 105(35):12837-42. PubMed ID: 18725638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmembrane signaling in the maltose ABC transporter MalFGK2-E: periplasmic MalF-P2 loop communicates substrate availability to the ATP-bound MalK dimer.
    Grote M; Polyhach Y; Jeschke G; Steinhoff HJ; Schneider E; Bordignon E
    J Biol Chem; 2009 Jun; 284(26):17521-6. PubMed ID: 19395376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP-driven MalK dimer closure and reopening and conformational changes of the "EAA" motifs are crucial for function of the maltose ATP-binding cassette transporter (MalFGK2).
    Daus ML; Grote M; Müller P; Doebber M; Herrmann A; Steinhoff HJ; Dassa E; Schneider E
    J Biol Chem; 2007 Aug; 282(31):22387-96. PubMed ID: 17545154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disulfide cross-linking reveals a site of stable interaction between C-terminal regulatory domains of the two MalK subunits in the maltose transport complex.
    Samanta S; Ayvaz T; Reyes M; Shuman HA; Chen J; Davidson AL
    J Biol Chem; 2003 Sep; 278(37):35265-71. PubMed ID: 12813052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP hydrolysis is required to reset the ATP-binding cassette dimer into the resting-state conformation.
    Lu G; Westbrooks JM; Davidson AL; Chen J
    Proc Natl Acad Sci U S A; 2005 Dec; 102(50):17969-74. PubMed ID: 16326809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative electron paramagnetic resonance study of the nucleotide-binding domains' catalytic cycle in the assembled maltose ATP-binding cassette importer.
    Grote M; Bordignon E; Polyhach Y; Jeschke G; Steinhoff HJ; Schneider E
    Biophys J; 2008 Sep; 95(6):2924-38. PubMed ID: 18567630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling between ATP hydrolysis and protein conformational change in maltose transporter.
    Lv X; Liu H; Chen H; Gong H
    Proteins; 2017 Feb; 85(2):207-220. PubMed ID: 27616441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleotide-dependent allostery within the ABC transporter ATP-binding cassette: a computational study of the MJ0796 dimer.
    Jones PM; George AM
    J Biol Chem; 2007 Aug; 282(31):22793-803. PubMed ID: 17485460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational Dynamics in the Binding-Protein-Independent Mutant of the Escherichia coli Maltose Transporter, MalG511, and Its Interaction with Maltose Binding Protein.
    Bajaj R; Park MI; Stauffacher CV; Davidson AL
    Biochemistry; 2018 May; 57(20):3003-3015. PubMed ID: 29637782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP alone triggers the outward facing conformation of the maltose ATP-binding cassette transporter.
    Bao H; Duong F
    J Biol Chem; 2013 Feb; 288(5):3439-48. PubMed ID: 23243313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleotide-free MalK drives the transition of the maltose transporter to the inward-facing conformation.
    Bao H; Duong F
    J Biol Chem; 2014 Apr; 289(14):9844-51. PubMed ID: 24526688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro interaction between components of the inner membrane complex of the maltose ABC transporter of Escherichia coli: modulation by ATP.
    Mourez M; Jéhanno M; Schneider E; Dassa E
    Mol Microbiol; 1998 Oct; 30(2):353-63. PubMed ID: 9791180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncoupling substrate transport from ATP hydrolysis in the Escherichia coli maltose transporter.
    Cui J; Qasim S; Davidson AL
    J Biol Chem; 2010 Dec; 285(51):39986-93. PubMed ID: 20959448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mode of Interaction of the Signal-Transducing Protein EIIA(Glc) with the Maltose ABC Transporter in the Process of Inducer Exclusion.
    Wuttge S; Licht A; Timachi MH; Bordignon E; Schneider E
    Biochemistry; 2016 Sep; 55(38):5442-52. PubMed ID: 27571040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dynamics of the MgATP-driven closure of MalK, the energy-transducing subunit of the maltose ABC transporter.
    Oloo EO; Fung EY; Tieleman DP
    J Biol Chem; 2006 Sep; 281(38):28397-407. PubMed ID: 16877382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vanadate-induced trapping of nucleotides by purified maltose transport complex requires ATP hydrolysis.
    Sharma S; Davidson AL
    J Bacteriol; 2000 Dec; 182(23):6570-6. PubMed ID: 11073897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional consequences of mutations in the conserved 'signature sequence' of the ATP-binding-cassette protein MalK.
    Schmees G; Stein A; Hunke S; Landmesser H; Schneider E
    Eur J Biochem; 1999 Dec; 266(2):420-30. PubMed ID: 10561582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.