These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 21060314)
1. Neuronal dysfunction in chronic spinal cord injury. Hubli M; Bolliger M; Dietz V Spinal Cord; 2011 May; 49(5):582-7. PubMed ID: 21060314 [TBL] [Abstract][Full Text] [Related]
2. Neuronal plasticity after a human spinal cord injury: positive and negative effects. Dietz V Exp Neurol; 2012 May; 235(1):110-5. PubMed ID: 21530507 [TBL] [Abstract][Full Text] [Related]
3. Influence of spinal reflexes on the locomotor pattern after spinal cord injury. Hubli M; Dietz V; Bolliger M Gait Posture; 2011 Jul; 34(3):409-14. PubMed ID: 21763140 [TBL] [Abstract][Full Text] [Related]
4. Changes in spinal reflex and locomotor activity after a complete spinal cord injury: a common mechanism? Dietz V; Grillner S; Trepp A; Hubli M; Bolliger M Brain; 2009 Aug; 132(Pt 8):2196-205. PubMed ID: 19460795 [TBL] [Abstract][Full Text] [Related]
5. Spinal neuronal dysfunction after stroke. Hubli M; Bolliger M; Limacher E; Luft AR; Dietz V Exp Neurol; 2012 Mar; 234(1):153-60. PubMed ID: 22226596 [TBL] [Abstract][Full Text] [Related]
6. Spinal reflex activity: a marker for neuronal functionality after spinal cord injury. Hubli M; Dietz V; Bolliger M Neurorehabil Neural Repair; 2012 Feb; 26(2):188-96. PubMed ID: 21921130 [TBL] [Abstract][Full Text] [Related]
7. Degradation of neuronal function following a spinal cord injury: mechanisms and countermeasures. Dietz V; Müller R Brain; 2004 Oct; 127(Pt 10):2221-31. PubMed ID: 15269117 [TBL] [Abstract][Full Text] [Related]
8. Behavior of spinal neurons deprived of supraspinal input. Dietz V Nat Rev Neurol; 2010 Mar; 6(3):167-74. PubMed ID: 20101254 [TBL] [Abstract][Full Text] [Related]
9. Modulation of spinal reflex by assisted locomotion in humans with chronic complete spinal cord injury. Bolliger M; Trepp A; Zörner B; Dietz V Clin Neurophysiol; 2010 Dec; 121(12):2152-8. PubMed ID: 20554473 [TBL] [Abstract][Full Text] [Related]
10. Modulation of spinal neuronal excitability by spinal direct currents and locomotion after spinal cord injury. Hubli M; Dietz V; Schrafl-Altermatt M; Bolliger M Clin Neurophysiol; 2013 Jun; 124(6):1187-95. PubMed ID: 23415451 [TBL] [Abstract][Full Text] [Related]
11. Undirected compensatory plasticity contributes to neuronal dysfunction after severe spinal cord injury. Beauparlant J; van den Brand R; Barraud Q; Friedli L; Musienko P; Dietz V; Courtine G Brain; 2013 Nov; 136(Pt 11):3347-61. PubMed ID: 24080153 [TBL] [Abstract][Full Text] [Related]
12. Neuronal function in chronic spinal cord injury: divergence between locomotor and flexion- and H-reflex activity. Müller R; Dietz V Clin Neurophysiol; 2006 Jul; 117(7):1499-507. PubMed ID: 16690351 [TBL] [Abstract][Full Text] [Related]
13. Body weight supported gait training: from laboratory to clinical setting. Dietz V Brain Res Bull; 2008 Jul; 76(5):459-63. PubMed ID: 18534251 [TBL] [Abstract][Full Text] [Related]
14. Body weight supported gait training: from laboratory to clinical setting. Dietz V Brain Res Bull; 2009 Jan; 78(1):I-VI. PubMed ID: 19070780 [TBL] [Abstract][Full Text] [Related]
15. The physiological basis of neurorehabilitation--locomotor training after spinal cord injury. Hubli M; Dietz V J Neuroeng Rehabil; 2013 Jan; 10():5. PubMed ID: 23336934 [TBL] [Abstract][Full Text] [Related]
16. Changes in cortically related intermuscular coherence accompanying improvements in locomotor skills in incomplete spinal cord injury. Norton JA; Gorassini MA J Neurophysiol; 2006 Apr; 95(4):2580-9. PubMed ID: 16407422 [TBL] [Abstract][Full Text] [Related]
17. Basic concepts of activity-based interventions for improved recovery of motor function after spinal cord injury. Roy RR; Harkema SJ; Edgerton VR Arch Phys Med Rehabil; 2012 Sep; 93(9):1487-97. PubMed ID: 22920448 [TBL] [Abstract][Full Text] [Related]
18. Changes in CNS structures after spinal cord lesions implications for BMI. Martinez M; Rossignol S Prog Brain Res; 2011; 194():191-202. PubMed ID: 21867804 [TBL] [Abstract][Full Text] [Related]
19. Kainate and metabolic perturbation mimicking spinal injury differentially contribute to early damage of locomotor networks in the in vitro neonatal rat spinal cord. Taccola G; Margaryan G; Mladinic M; Nistri A Neuroscience; 2008 Aug; 155(2):538-55. PubMed ID: 18602453 [TBL] [Abstract][Full Text] [Related]
20. Multi-system neurorehabilitative strategies to restore motor functions following severe spinal cord injury. Musienko P; Heutschi J; Friedli L; van den Brand R; Courtine G Exp Neurol; 2012 May; 235(1):100-9. PubMed ID: 21925172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]